已知拋物線y=x2-2kx+3k+4.
(1)頂點在y軸上時,k的值為_________.
(2)頂點在x軸上時,k的值為_________.
(3)拋物線經過原點時,k的值為_______.
科目:初中數學 來源: 題型:解答題
如圖,排球運動員站在點O處練習發球,將球從O點正上方2m的A處發出,把球看成點,其運行的高度y(m)與運行的水平距離x(m)滿足關系式y=a(x-6)2+2.6已知球網與O點的水平距離為9m,高度為2.43m,球場的邊界距O點的水平距離為18m.
(1)求y與x的關系式;(不要求寫出自變量x的取值范圍)
(2)球能否越過球網?球會不會出界?請說明理由;
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
如圖,直線交x軸于A點,交y軸于B點,拋物線
經過點A、B,交x軸于另一點C,頂點為D.
(1)求拋物線的函數表達式;
(2)求點C、D兩點的坐標;
(3)求△ABD的面積;
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
為鼓勵大學畢業生自主創業,某市政府出臺了相關政策:由政府協調,本市企業按成本價提供產品給大學畢業生自主銷售,成本價與出廠價之間的差價由政府承擔.李明按照相關政策投資銷售本市生產的一種新型節能燈.已知這種節能燈的成本價為每件10元,出廠價為每件12元,每月銷售量y(件)與銷售單價x(元)之間的關系近似滿足一次函數:y=﹣10x+500.
(1)李明在開始創業的第一個月將銷售單價定為20元,那么政府這個月為他承擔的總差價為多少元?
(2)設李明獲得的利潤為w(元),當銷售單價定為多少元時,每月可獲得最大利潤?
(3)物價部門規定,這種節能燈的銷售單價不得高于25元.如果李明想要每月獲得的利潤不低于3000元,那么政府為他承擔的總差價最少為多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
已知二次函數
(1)求證:不論a為何實數,此函數圖象與x軸總有兩個交點.
(2)設a<0,當此函數圖象與x軸的兩個交點的距離為時,求出此二次函數的解析式.
(3)在(2)的條件下,若此二次函數圖象與x軸交于A、B兩點,在函數圖象上是否存在點P,使得△PAB的面積為,若存在求出P點坐標,若不存在請說明理由。
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
如圖,拋物線y=x2+bx+c與x軸交于A(-1,0)、B(3,0)兩點,直線L與拋物線交于A、C兩點,其中C點的橫坐標為2.
(1)求拋物線的解析式及直線AC的解析式;
(2)若點D是線段AC下方拋物線上的動點,求四邊形ABCD面積的最大值;
(3)點G是拋物線上的動點,在x軸上是否存在點F,使A、C、F、G這樣的四個點為頂點的四邊形是平行四邊形?如果存在,求出所有滿足條件的F點坐標;如果不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
如圖,一次函數y=kx+n的圖象與x軸和y軸分別交于點A(6,0)和B(0,),線段AB的垂直平分線交x軸于點C,交AB于點D.
(1)試確定這個一次函數解析式;(3分)
(2)求過A、B、C三點的拋物線的函數關系式;(6分)
(3)請你利用所求拋物線的圖像回答:當x取何值時,拋物線中的部分圖像落在x軸的上方? (3分)
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
如圖,在直角坐標系中,點A的坐標為(,0),連結OA,將線段OA繞原點O順時針旋轉120°,得到線段OB.
(1)請直接寫出點B的坐標;
(2)求經過A、O、B三點的拋物線的解析式;
(3)如果點P是(2)中的拋物線上的動點,且在x軸的上方,那么△PAB是否有最大面積?若有,求出此時P點的坐標及△PAB的最大面積;若沒有,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com