【題目】如圖甲,直線y=﹣x+3與x軸、y軸分別交于點B、點C,經過B、C兩點的拋物線y=x2+bx+c與x軸的另一個交點為A,頂點為P.
(1)求該拋物線的解析式;
(2)在該拋物線的對稱軸上是否存在點M,使以C,P,M為頂點的三角形為等腰三角形?若存在,請直接寫出所符合條件的點M的坐標;若不存在,請說明理由;
(3)當0<x<3時,在拋物線上求一點E,使△CBE的面積有最大值(圖乙、丙供畫圖探究).
【答案】
(1)
解:∵直線y=﹣x+3與x軸、y軸分別交于點B、點C,
∴B(3,0),C(0,3),
把B、C坐標代入拋物線解析式可得 ,解得
,
∴拋物線解析式為y=x2﹣4x+3
(2)
解:∵y=x2﹣4x+3=(x﹣2)2﹣1,
∴拋物線對稱軸為x=2,P(2,﹣1),
設M(2,t),且C(0,3),
∴MC= =
,MP=|t+1|,PC=
=2
,
∵△CPM為等腰三角形,
∴有MC=MP、MC=PC和MP=PC三種情況,
①當MC=MP時,則有 =|t+1|,解得t=
,此時M(2,
);
②當MC=PC時,則有 =2
,解得t=﹣1(與P點重合,舍去)或t=7,此時M(2,7);
③當MP=PC時,則有|t+1|=2 ,解得t=﹣1+2
或t=﹣1﹣2
,此時M(2,﹣1+2
)或(2,﹣1﹣2
);
綜上可知存在滿足條件的點M,其坐標為(2, )或(2,7)或(2,﹣1+2
)或(2,﹣1﹣2
)
(3)
解:如圖,過E作EF⊥x軸,交BC于點F,交x軸于點D,
設E(x,x2﹣4x+3),則F(x,﹣x+3),
∵0<x<3,
∴EF=﹣x+3﹣(x2﹣4x+3)=﹣x2+3x,
∴S△CBE=S△EFC+S△EFB= EFOD+
EFBD=
EFOB=
×3(﹣x2+3x)=﹣
(x﹣
)2+
,
∴當x= 時,△CBE的面積最大,此時E點坐標為(
,﹣
),
即當E點坐標為( ,﹣
)時,△CBE的面積最大
【解析】(1)由直線解析式可求得B、C坐標,利用待定系數法可求得拋物線解析式;(2)由拋物線解析式可求得P點坐標及對稱軸,可設出M點坐標,表示出MC、MP和PC的長,分MC=MP、MC=PC和MP=PC三種情況,可分別得到關于M點坐標的方程,可求得M點的坐標;(3)過E作EF⊥x軸,交直線BC于點F,交x軸于點D,可設出E點坐標,表示出F點的坐標,表示出EF的長,進一步可表示出△CBE的面積,利用二次函數的性質可求得其取得最大值時E點的坐標.
【考點精析】解答此題的關鍵在于理解二次函數的性質的相關知識,掌握增減性:當a>0時,對稱軸左邊,y隨x增大而減;對稱軸右邊,y隨x增大而增大;當a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減。
科目:初中數學 來源: 題型:
【題目】如圖1,在四邊形ABDC中,AC=AB,DC=DB,∠CAB=60°,∠CDB=120°.
(1)連接AD,根據 易證△ACD≌△ ;
(2)如圖2,若E是AC上一點,F是AB延長線上一點,且CE=BF,求證:DE=DF;
(3)如圖3,在(2)的條件下,若G在AB上且∠EDG=60°,試猜想CE、EG、BG之間的數量關系并證明所歸納結論;
(4)若題中條件“∠CAB=60°且∠CDB=120°”改為“∠CAB=α,∠CDB=180°﹣α”,G在AB上,∠EDG滿足什么條件時,(3)中結論仍然成立?(只寫結果不要證明).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,等腰三角形ABC中,BD,CE分別是兩腰上的中線.
(1)求證:BD=CE;
(2)設BD與CE相交于點O,點M,N分別為線段BO和CO的中點,當△ABC的重心到頂點A的距離與底邊長相等時,判斷四邊形DEMN的形狀,無需說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線 與x軸的負半軸交于點A,與y軸交于點B,連結AB.點C
在拋物線上,直線AC與y軸交于點D.
(1)求c的值及直線AC的函數表達式;
(2)點P在x軸的正半軸上,點Q在y軸正半軸上,連結PQ與直線AC交于點M,連結MO并延長交AB于點N,若M為PQ的中點.
①求證:△APM∽△AON;
②設點M的橫坐標為m , 求AN的長(用含m的代數式表示).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=a(x﹣1)(x﹣3)與x軸交于A,B兩點,與y軸的正半軸交于點C,其頂點為D.
(1)寫出C,D兩點的坐標(用含a的式子表示);
(2)設S△BCD:S△ABD=k,求k的值;
(3)當△BCD是直角三角形時,求對應拋物線的解析式.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,在平面直角坐標系中,已知拋物線y=ax2+bx﹣5與x軸交于A(﹣1,0),B(5,0)兩點,與y軸交于點C.
(1)求拋物線的函數表達式;
(2)若點D是y軸上的一點,且以B,C,D為頂點的三角形與△ABC相似,求點D的坐標;
(3)如圖2,CE∥x軸與拋物線相交于點E,點H是直線CE下方拋物線上的動點,過點H且與y軸平行的直線與BC,CE分別交于點F,G,試探究當點H運動到何處時,四邊形CHEF的面積最大,求點H的坐標及最大面積;
(4)若點K為拋物線的頂點,點M(4,m)是該拋物線上的一點,在x軸,y軸上分別找點P,Q,使四邊形PQKM的周長最小,求出點P,Q的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】觀察下列等式:
①3-2=(
-1)2;
②5-2=(
-
)2;
③7-2=(
-
)2;…
(1)請你根據以上規律,寫出第6個等式 .
(2)第n個等式可以表示為 ,并請你證明你得到的等式.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com