【題目】如圖,AB⊥BC,射線CM⊥BC,且BC=4,AB=1,點P是線段BC(不與點B、C重合)上的動點,過點P作DP⊥AP交射線CM于點D,連結AD.
(1)如圖1,若BP=3,求△ABP的周長;
(2)如圖2,若DP平分∠ADC,試猜測PB和PC的數量關系,并說明理由;
(3)若△PDC是等腰三角形,作點B關于AP的對稱點B′,連結B′D,則B′D=_____.(請直接寫出答案)
【答案】(1)+5;(2)PB=PC;(3)5
【解析】
試題(1)根據勾股定理直接求出AP的值就可以求出結論;
(2)延長線段AP、DC交于點E,就可以得出△DPA≌△DPE,就有AP=PE,在證明△APB≌△EPC就可以得出結論;
(3)連接AB′,PB′,作B′E⊥CD于E,就可以得出PB′=CE=1,DE=2,在Rt△B′DE中由勾股定理就可以求出結論.
試題解析:(1)∵AB⊥BC∴∠ABP=90°,
∴AP2=AB2+BP2,
∴AP==
=
,
∴AP+AB+BP=+1+4=
+5
∴△APB的周長為+5;
(2)PB=PC,
理由如下:
延長線段AP、DC交于點E
∵DP平分∠ADC,
∴∠ADP=∠EDP.
∵DP⊥AP,
∴∠DPA=∠DPE=Rt∠.
在△DPA和△DPE中
,
∴△DPA≌△DPE(ASA),
∴PA=PE.
∵AB⊥BP,CM⊥CP,
∴∠ABP=∠ECP=Rt∠.
在△APB和△EPC中
,
∴△APB≌△EPC(AAS),
∴PB=PC;
(3)答案為:5.
科目:初中數學 來源: 題型:
【題目】已知,如圖,一次函數y=kx+b(k、b為常數,k≠0)的圖象與x軸、y軸分別交于A、B兩點,且與反比例函數y= (n為常數且n≠0)的圖象在第二象限交于點C.CD⊥x軸,垂直為D,若OB=2OA=3OD=6.
(1)求一次函數與反比例函數的解析式;
(2)求兩函數圖象的另一個交點坐標;
(3)直接寫出不等式;kx+b≤ 的解集.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,以△ABC的邊AB為直徑的⊙O交邊BC于點E,過點E作⊙O的切線交AC于點D,且ED⊥AC.
(1)試判斷△ABC的形狀,并說明理由;
(2)如圖2,若線段AB、DE的延長線交于點F,∠C=75°,CD=2﹣ ,求⊙O的半徑和BF的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠C=150°,AC=4,tanB= .
(1)求BC的長;
(2)利用此圖形求tan15°的值(精確到0.1,參考數據: =1.4,
=1.7,
=2.2)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為積極響應市委政府“加快建設天藍水碧地綠的美麗長沙”的號召,我市某街道決定從備選的五種樹中選購一種進行栽種.為了更好地了解社情民意,工作人員在街道轄區范圍內隨機抽取了部分居民,進行“我最喜歡的一種樹”的調查活動(每人限選其中一種樹),并將調查結果整理后,繪制成如圖兩個不完整的統計圖:
請根據所給信息解答以下問題:
(1)這次參與調查的居民人數為:;
(2)請將條形統計圖補充完整;
(3)請計算扇形統計圖中“楓樹”所在扇形的圓心角度數;
(4)已知該街道轄區內現有居民8萬人,請你估計這8萬人中最喜歡玉蘭樹的有多少人?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在矩形紙片ABCD中,AB=6,BC=10,點E在CD上,將△BCE沿BE折疊,點C恰落在邊AD上的點F處;點G在AF上,將△ABG沿BG折疊,點A恰落在線段BF上的點H處,有下列結論:
①∠EBG=45°;②△DEF∽△ABG;③S△ABG= S△FGH;④AG+DF=FG.
其中正確的是 . (把所有正確結論的序號都選上)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,A,B分別在射線OA,ON上,且∠MON為鈍角,現以線段OA,OB為斜邊向∠MON的外側作等腰直角三角形,分別是△OAP,△OBQ,點C,D,E分別是OA,OB,AB的中點.
(1)求證:△PCE≌△EDQ;
(2)延長PC,QD交于點R.
①如圖1,若∠MON=150°,求證:△ABR為等邊三角形;
②如圖3,若△ARB∽△PEQ,求∠MON大小和 的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在一個不透明的布袋中裝有相同的三個小球,其上面分別標注數字1、2、3、,現從中任意摸出一個小球,將其上面的數字作為點M的橫坐標;將球放回袋中攪勻,再從中任意摸出一個小球,將其上面的數字作為點M的縱坐標.
(1)寫出點M坐標的所有可能的結果;
(2)求點M在直線y=x上的概率;
(3)求點M的橫坐標與縱坐標之和是偶數的概率.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com