【題目】如圖,在△ABC中,∠ACB=90°,BC的垂直平分線DE交BC于D,交AB于E,點F在DE的延長線上,且AF=CE=AE.
(1)求證:四邊形ACEF是平行四邊形;
(2)當∠B=30°時,試猜想四邊形ACEF是什么圖形,并說明理由.
【答案】(1)見解析;(2)四邊形ACEF為菱形,見解析.
【解析】
(1)易知DE是△ABC的中位線,則FE∥AC,BE=EA=CE=AF;因此△AFE、△AEC都是等腰三角形,可得∠F=∠5=∠1=∠2,即∠FAE=∠AEC,由此可證得AF∥EC,即可得出結論;
(2)證出AC=CE,即可得出結論.
(1)證明:∵DE垂直平分BC,
∴D為BC的中點,ED⊥BC,
又∵AC⊥BC,
∴ED∥AC,
∴E為AB中點,
∴ED是△ABC的中位線.
∴BE=AE,FD∥AC.
∴CE是是△ABC斜邊上的中線
∴CE=AB,
∵CE=AE=AF.
∴∠F=∠5=∠1=∠2.
∴∠FAE=∠AEC.
∴AF∥EC.
又∵AF=EC,
∴四邊形ACEF是平行四邊形;
(2)解:當∠B=30°時,四邊形ACEF為菱形;
理由:∵∠ACB=90°,∠B=30°,
∴AC=AB,
由(1)知CE=AB,
∴AC=CE
又∵四邊形ACEF為平行四邊形
∴四邊形ACEF為菱形.
科目:初中數學 來源: 題型:
【題目】在ABCD中,點B關于AD的對稱點為B′,連接AB′,CB′,CB′交AD于F點.
(1)如圖1,∠ABC=90°,求證:F為CB′的中點;
(2)小宇通過觀察、實驗、提出猜想:如圖2,在點B繞點A旋轉的過程中,點F始終為CB′的中點.小宇把這個猜想與同學們進行交流,通過討論,形成了證明該猜想的幾種想法:
想法1:過點B′作B′G∥CD交AD于G點,只需證三角形全等;
想法2:連接BB′交AD于H點,只需證H為BB′的中點;
想法3:連接BB′,BF,只需證∠B′BC=90°.
…
請你參考上面的想法,證明F為CB′的中點.(一種方法即可)
(3)如圖3,當∠ABC=135°時,AB′,CD的延長線相交于點E,求的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了弘揚傳統文化,提高學生文明意識,育紅學校組織全校80個班級進行“誦經典,傳文明”演講賽,比賽后對各班成績進行了整理,分成4個小組(x表示成績,單位:分):A組:60≤x<70;B組:70≤x<80;C組:80≤x<90;D組:90≤x<100,并且繪制了如右不完整的扇形統計圖.請根據圖中信息,解答下列問題:
(1)求扇形統計圖中,B組對應的圓心角是多少度?
(2)學校從D組中選取了2名男生和2名女生組成代表隊參加了區級比賽,由于表現突出,被要求再從這4名學生中隨機選取兩名同學參加市級比賽,請用列表或畫樹狀圖的方法,求恰好選中一名男生和一名女生的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知△AOB,A(0,﹣3),B(﹣2,0).將△OAB先繞點B 逆時針旋轉90°得到△BO1A1,再把所得三角形向上平移2個單位得到△B1A2O2;
(1)在圖中畫出上述變換的圖形,并涂黑;
(2)求△OAB在上述變換過程所掃過的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在矩形ABCD中,CD=3cm,BC=4cm,連接BD,并過點C作CN⊥BD,垂足為N,直線l垂直BC,分別交BD、BC于點P、Q.直線l從AB出發,以每秒1cm的速度沿BC方向勻速運動到CD為止;點M沿線段DA以每秒1cm的速度由點D向點A勻速運動,到點A為止,直線1與點M同時出發,設運動時間為t秒(t>0).
(1)線段CN= ;
(2)連接PM和QN,當四邊形MPQN為平行四邊形時,求t的值;
(3)在整個運動過程中,當t為何值時△PMN的面積取得最大值,最大值是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀下列材料:
材料一:
早在2011年9月25日,北京故宮博物院就開始嘗試網絡預售門票,2011年全年網絡售票僅占1.68%.2012年至2014年,全年網絡售票占比都在2%左右.2015年全年網絡售票占17.33%,2016年全年網絡售票占比增長至41.14%.2017年8月實現網絡售票占比77%.2017年10月2日,首次實現全部網上售票.與此同時,網絡購票也采用了“人性化”的服務方式,為沒有線上支付能力的觀眾提供代客下單服務.實現全網絡售票措施后,在北京故宮博物院的精細化管理下,觀眾可以更自主地安排自己的行程計劃,獲得更美好的文化空間和參觀體驗.
材料二:
以下是某同學根據網上搜集的數據制作的2013-2017年度中國國家博物館參觀人數及年增長率統計表.
年度 | 2013 | 2014 | 2015 | 2016 | 2017 |
參觀人數(人次) | 7 450 000 | 7 630 000 | 7 290 000 | 7 550 000 | 8 060 000 |
年增長率(%) | 38.7 | 2.4 | -4.5 | 3.6 | 6.8 |
他還注意到了如下的一則新聞:2018年3月8日,中國國家博物館官方微博發文,宣布取消紙質門票,觀眾持身份證預約即可參觀. 國博正在建設智慧國家博物館,同時館方工作人員擔心的是:“雖然有故宮免(紙質)票的經驗在前,但對于國博來說這項工作仍有新的挑戰.參觀故宮需要觀眾網上付費購買門票,他遵守預約的程度是不一樣的.但(國博)免費就有可能約了不來,擠占資源,所以難度其實不一樣.” 盡管如此,國博仍將積極采取技術和服務升級,希望帶給觀眾一個更完美的體驗方式.
根據以上信息解決下列問題:
(1)補全以下兩個統計圖;
(2)請你預估2018年中國國家博物館的參觀人數,并說明你的預估理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,△ABC是等腰直角三角形,∠BAC= 90°,AB=AC,四邊形ADEF是正方形,點B、C分別在邊AD、AF上,此時BD=CF,BD⊥CF成立.
(1)當△ABC繞點A逆時針旋轉θ(0°<θ<90°)時,如圖2,BD=CF成立嗎?若成立,請證明;若不成立,請說明理由.
(2)當△ABC繞點A逆時針旋轉45°時,如圖3,延長DB交CF于點H.
①求證:BD⊥CF;
②當AB=2,AD=3時,求線段DH的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,分別沿長方形紙片ABCD和正方形紙片EFGH的對角線AC,EG剪開,拼成如圖2所示的ALMN,若中間空白部分四邊形OPQR恰好是正方形,且ALMN的面積為50,則正方形EFGH的面積為( 。
A. 24 B. 25 C. 26 D. 27
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】我國為了實現到2020年達到全面小康社會的目標,近幾年加大了扶貧工作的力度,合肥市某知名企業為了幫助某小型企業脫貧,投產一種書包,每個書包制造成本為18元,試銷過程中發現,每月銷售量y(萬個)與銷售單價x(元)之間的關系可以近似看作一次函數y=kx+b,據統計當售價定為30元/個時,每月銷售40萬個,當售價定為35元/個時,每月銷售30萬個.
(1)請求出k、b的值.
(2)寫出每月的利潤w(萬元)與銷售單價x(元)之間的函數解析式.
(3)該小型企業在經營中,每月銷售單價始終保持在25≤x≤36元之間,求該小型企業每月獲得利潤w(萬元)的范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com