【題目】如圖,△ABC 中,點 D 為邊 BC 的點,點 E、F 分別是邊 AB、AC 上兩點,且 EF∥BC,若 AE:EB=m,BD:DC=n,則( )
A.若 m>1,n>1,則 2S△AEF>S△ABDB.若 m>1,n<1,則 2S△AEF<S△ABD
C.若 m<1,n<1,則 2S△AEF<S△ABDD.若 m<1,n>1,則 2S△AEF<S△ABD
【答案】D
【解析】
根據相似三角形的判定與性質,得出,
,從而建立等式關系,得出
,然后再逐一分析四個選項,即可得出正確答案 .
解:∵EF∥BC,若AE:EB=m,BD:DC=n,
∴△AEF∽△ABC,
∴,
∴,
∴,
∴
∴當m=1,n=1,即當E為AB中點,D為BC中點時,,
A.當m>1,n>1時,S△AEF與S△ABD同時增大,則或
,即2
或2>
,故A錯誤;
B.當m>1,n <1,S△AEF增大而S△ABD減小,則,即2
,故B錯誤;
C.m<1,n<1,S△AEF與S△ABD同時減小,則或
,即2
或2
<
,故C錯誤;
D.m<1,n>1,S△AEF減小而S△ABD增大,則,即2
<
,故D正確 .
故選D .
科目:初中數學 來源: 題型:
【題目】某興趣小組想借助如圖所示的直角墻角(兩邊足夠長),用20m長的籬笆圍成一個矩形ABCD(籬笆只圍AB,BC兩邊),設ABxm.
(1)若花園的面積96m2,求x的值;
(2)若在P處有一棵樹與墻CD,AD的距離分別是11m和5m,要將這棵樹圍在花園內(含邊界,不考慮樹的粗細),求花園面積S的最大值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】 如圖,中,
,動點
從
出發,以每秒
個單位長度的速度向終點
運動,過點
作
交
于點
,過點
作
的平行線,與過點
且與
垂直的直線交于點
,設點
的運動時間為
(秒)
(1)用含的代數式表示線段
的長;
(2)求當點落在
邊上時t的值;
(3)設與
重合部分圖形的面積為
(平方單位),求
與的
函數關系式;
(4)連結,若將
沿它自身的某邊翻折,翻折前后的兩個三角形形成菱形,直接寫出此時
的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】定義:如果一元二次方程滿足a+b+c=0,我們稱這個方程為“鳳凰”方程.已知
是鳳凰方程,且有兩個相等的實數根,則下列正確的是( 。
A.a=cB.a=bC.b=cD.a=b=c
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為響應市委市政府提出的建設“綠色襄陽”的號召,我市某單位準備將院內一塊長30m,寬20m的長方形空地,建成一個矩形花園.要求在花園中修兩條縱向平行和一條橫向彎折的小道,剩余的地方種植花草,如圖所示,要使種植花草的面積為532m2,那么小道進出口的寬度應為多少米?(注:所有小道進出口的寬度相等,且每段小道均為平行四邊形)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,CD是邊AB上的中線,∠B是銳角,sinB=,tanA=
,AC=
,
(1)求∠B 的度數和 AB 的長.
(2)求 tan∠CDB 的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】 鄭州外國語中學為了解學生課下閱讀所用時間的情況,從各年級學生中隨機抽查了一部分學生進行統計,下面是針對此次統計所制作的不完整的頻數分布表和頻數分布直方圖,請根據圖表信息回答下列問題:
組別 | 時間段(小時) | 頻數 | 頻率 |
1 | 0≤x<0.5 | 10 | 0.05 |
2 | 0.5≤x<1.0 | 20 | 0.10 |
3 | 1.0≤x<1.5 | 80 | b |
4 | 1.5≤x<2.0 | a | 0.35 |
5 | 2.0≤x<2.5 | 12 | 0.06 |
6 | 2.5≤x<3.0 | 8 | 0.04 |
(1)表中a=______b=______;
(2)請補全頻數分布直方圖;
(3)樣本中,學生日閱讀所用時間的中位數落在第______組;
(4)該校共有學生3000人,請估計學生日閱讀量不少于1.5小時的人數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,二次函數y=ax2﹣2ax﹣3a(a<0)的圖象與x軸交于A、B兩點(點A在點B的右側),與y軸的正半軸交于點C,頂點為D.
(1)求頂點D的坐標(用含a的代數式表示);
(2)若以AD為直徑的圓經過點C.
①求拋物線的函數關系式;
②如圖2,點E是y軸負半軸上一點,連接BE,將△OBE繞平面內某一點旋轉180°,得到△PMN(點P、M、N分別和點O、B、E對應),并且點M、N都在拋物線上,作MF⊥x軸于點F,若線段MF:BF=1:2,求點M、N的坐標;
③點Q在拋物線的對稱軸上,以Q為圓心的圓過A、B兩點,并且和直線CD相切,如圖3,求點Q的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在四邊形中,
,
,
,
,點
是邊
上一點,過點
分別作
與
的垂線,過點
作
的垂線,得到矩形
和矩形
,則這兩個矩形的面積之和的最大值是_________.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com