【題目】一只不透明的袋子中裝有2個白球、1個紅球、1個黃球,這些球除顏色外都相同,將球攪勻.
(1)從中任意摸出1個球,恰好是白球的概率是 ;
(2)從中任意摸出2個球,求2個球都是白球的概率(用畫樹狀圖或列表等方法求解).
科目:初中數學 來源: 題型:
【題目】“綠水青山就是金山銀山”,北京市民積極參與義務植樹活動.小武同學為了了解自己小區300戶家庭在2018年4月份義務植樹的數量,進行了抽樣調查,隨即抽取了其中30戶家庭,收集的數據如下(單位:棵):
1 1 2 3 2 3 2 3 3 4 3 3 4 3 3
5 3 4 3 4 4 5 4 5 3 4 3 4 5 6
(1)對以上數據進行整理、描述和
①繪制如下的統計圖,請補充完整;
②這30戶家庭2018年4月份義務植樹數量的平均數是______,眾數是______;
(2)“互聯網+全民義務植樹”是新時代首都全民義務植樹組織形式和盡責方式的一大創新,2018年首次推出義務植樹網上預約服務,小武同學所調查的這30戶家庭中有7戶家庭采用了網上預約義務植樹這種方式,由此可以估計該小區采用這種形式的家庭有______戶.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB為⊙O的直徑,點C為下方的一動點,連結OC,過點O作OD⊥OC交BC于點D,過點C作AB的垂線,垂足為F,交DO的延長線于點E.
(1)求證:EC=ED.
(2)當OE=OD,AB=4時,求OE的長.
(3)設=x,tanB=y.
①求y關于x的函數表達式;
②若△COD的面積是△BOD的面積的3倍,求y的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖①,在中,點
分別在
上,且
.設
的邊
上的高為
,
的邊
上的高為
.
(1)若、
的面積分別為3,1,則
;
(2)設、
、四邊形
的面積分別為
,求證:
;
(3)如圖②,在中,點
分別在
上,點
在
上,且
,
. 若
、
、
的面積分別為3, 7, 5,求
的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某公司推出一款產品,經市場調查發現,該產品的日銷售量y(個)與銷售單價x(元)之間滿足一次函數關系.關于銷售單價,日銷售量,日銷售利潤的幾組對應值如下表:
銷售單價x(元) | 85 | 95 | 105 | 115 |
日銷售量y(個) | 175 | 125 | 75 | m |
日銷售利潤w(元) | 875 | 1875 | 1875 | 875 |
(注:日銷售利潤=日銷售量×(銷售單價﹣成本單價))
(1)求y關于x的函數解析式(不要求寫出x的取值范圍)及m的值;
(2)根據以上信息,填空:
該產品的成本單價是 元,當銷售單價x= 元時,日銷售利潤w最大,最大值是 元;
(3)公司計劃開展科技創新,以降低該產品的成本,預計在今后的銷售中,日銷售量與銷售單價仍存在(1)中的關系.若想實現銷售單價為90元時,日銷售利潤不低于3750元的銷售目標,該產品的成本單價應不超過多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖①,在△ABC中,∠ACB=90°,∠B=30°,AC=1,D為AB的中點,EF為△ACD 的中位線,四邊形EFGH為△ACD的內接矩形(矩形的四個頂點均在△ACD的邊上).
(1)計算矩形EFGH的面積;
(2)將矩形EFGH沿AB向右平移,F落在BC上時停止移動.在平移過程中,當矩形與△CBD重疊部分的面積為時,求矩形平移的距離;
(3)如圖③,將(2)中矩形平移停止時所得的矩形記為矩形,將矩形
繞
點按順時針方向旋轉,當
落在CD上時停止轉動,旋轉后的矩形記為矩形
,設旋轉角為
,求
的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知拋物線過點A(﹣3,0),B(﹣2,3),C(0,3),其頂點為D.
(1)求拋物線的解析式;
(2)設點M(1,m),當MB+MD的值最小時,求m的值;
(3)若P是拋物線上位于直線AC上方的一個動點,求△APC的面積的最大值;
(4)若拋物線的對稱軸與直線AC相交于點N,E為直線AC上任意一點,過點E作EF∥ND交拋物線于點F,以N,D,E,F為頂點的四邊形能否為平行四邊形?若能,求點E的坐標;若不能,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com