【題目】如圖,∠ABD和∠BDC的平分線交于E,BE交CD于點F,∠1+∠2=90°.
(1)試說明:AB∥CD;
(2)若∠2=25°,求∠3的度數.
【答案】
(1)解:∵∠ABD和∠BDC的平分線交于E,
∴∠ABD=2∠1,∠BDC=2∠2,
∵∠1+∠2=90°,
∴∠ABD+∠BDC=180°,
∴AB∥CD
(2)解:∵DE平分∠BDC,
∴∠EDF=∠2=25°,
∵∠1+∠2=90°,
∴∠FED=90°,
∴∠3=180°﹣90°﹣25°=65°
【解析】(1)根據角平分線定義求出∠ABD+∠BDC=180°,根據平行線的判定推出即可;(2)根據角平分線求出∠EDF,根據三角形外角性質求出∠FED,根據三角形內角和定理求出即可.
【考點精析】解答此題的關鍵在于理解平行線的判定與性質的相關知識,掌握由角的相等或互補(數量關系)的條件,得到兩條直線平行(位置關系)這是平行線的判定;由平行線(位置關系)得到有關角相等或互補(數量關系)的結論是平行線的性質.
科目:初中數學 來源: 題型:
【題目】九年級一班數學老師對全班學生在模擬考試中A卷成績進行統計后,制成如下的統計表:則該班學生A卷成績的眾數和中位數分別是( 。
成績(分) | 80 | 82 | 84 | 86 | 87 | 90 |
人數 | 8 | 12 | 9 | 3 | 5 | 8 |
A. 82分,82分B. 82分,83分C. 80分,82分D. 82分,84分
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=6cm,BC=4cm.動點E從點B出發,沿著線路BC→CD→DA運動,在BC段的平均速度是1cm/s,在CD段的平均速度是2cm/s,在DA段的平均速度是4cm/s,到點A停止.設△ABE的面積為y(cm2),則y與點E的運動時間t(s)的函數關系圖象大致是( )
A. B.
C. D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在等腰三角形ABC中,AB=AC,∠BAC=50°.∠BAC的平分線與AB的中垂線相交于點O,點C沿EF折疊后與點O重合,求∠CEF的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系的第四象限內有一點P,點P到x軸距離為2,到y軸距離為1,則點P的坐標為( )
A. (-2,1)B. (2,-1)C. (-1,2)D. (1,-2)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在正方形ABCD中,邊長為2的等邊三角形AEF的頂點E、F分別在BC和CD上.下列結論:①CE=CF;②∠AEB=75°;③BE+DF=EF;④.其中正確的個數為( )
A.1 B.2 C.3 D.4
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如果一個正整數能表示成兩個連續偶數的平方差,那么這個正整數為“神秘數”.
如:
因此,4,12,20這三個數都是神秘數.
(1)28和2012這兩個數是不是神秘數?為什么?
(2)設兩個連續偶數為和
(其中
為非負整數),由這兩個連續偶數構造的神秘數是4的倍數,請說明理由.
(3)兩個連續奇數的平方差(取正數)是不是神秘數?請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】把多項式x2+ax+b分解因式,得(x+1)(x﹣3),則a,b的值分別是( )
A.a=﹣2,b=﹣3
B.a=2,b=3
C.a=﹣2,b=3
D.a=2,b=﹣3
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com