【題目】如圖,等邊三角形ABC的邊長是2,M是高CH所在直線上的一個動點,連接MB,將線段BM繞點B逆時針旋轉60°得到BN,連接MN,則在點M運動過程中,線段MN長度的最小值是( 。
A. B. 1 C.
D.
科目:初中數學 來源: 題型:
【題目】如圖,P為反比例函數y=(k>0)在第一象限內圖象上的一點,過點P分別作x軸,y軸的垂線交一次函數y=-x-6的圖象于點A、B.若∠AOB=135°,則k的值是______.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點P是正方形ABCD內一點,點P到點A,B和D的距離分別為1,2,
.△ADP沿點A旋轉至△ABP′,連接PP′,并延長AP與BC相交于點Q.
(1)求證:△APP′是等腰直角三角形;
(2)求∠BPQ的大小.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中有三點(1,2),(3,1),(-2,-1),其中有兩點同時在反比例函數的圖象上,將這兩點分別記為A,B,另一點記為C,
(1)求出的值;
(2)求直線AB對應的一次函數的表達式;
(3)設點C關于直線AB的對稱點為D,P是軸上的一個動點,直接寫出PC+PD的最小值(不必說明理由).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AB=5,AC=9,S△ABC=,動點P從A點出發,沿射線AB方向以每秒5個單位的速度運動,動點Q從C點出發,以相同的速度在線段AC上由C向A運動,當Q點運動到A點時,P、Q兩點同時停止運動,以PQ為邊作正方形PQEF(P、Q、E、F按逆時針排序),以CQ為邊在AC上方作正方形QCGH.
(1)求tanA的值;
(2)設點P運動時間為t,正方形PQEF的面積為S,請探究S是否存在最小值?若存在,求出這個最小值,若不存在,請說明理由;
(3)當t為何值時,正方形PQEF的某個頂點(Q點除外)落在正方形QCGH的邊上,請直接寫出t的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,游客在點A處坐纜車出發,沿A﹣B﹣D的路線可至山頂D處.已知AB=BD=800米,∠α=75°,∠β=45°,求山高DE(結果精確到1米).(參考數據:sin75°=0.966,cos75°=0.259,tan75°=3.732,=1.414)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,AC是⊙O的切線,切點為A,BC交⊙O于點D,點E是AC的中點.
(1)試判斷直線DE與⊙O的位置關系,并說明理由;
(2)若⊙O的半徑為3,∠ACB=40°,AC=7.2,求圖中陰影部分的周長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】附加題:如圖,直線:
與
軸、
軸分別交于點
、
,經過
、
兩點的拋物線
與
軸的另一個交點為
.
(1)求該拋物線的解析式;
(2)若點在直線
下方的拋物線上,過點
作
軸交
于點
,
軸交
于點
,求
的最大值;
(3)設為直線
上的點,以
、
、
、
為頂點的四邊形能否構成平行四邊形?若能,求出點
的坐標;若不能,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com