【題目】先化簡,再求值 (a﹣ )(
﹣1)÷
,其中a,b分別為關于x的一元二次方程x2﹣
x+1=0的兩個根.
科目:初中數學 來源: 題型:
【題目】如圖,港口A在觀測站O的正東方向,OA=4km,某船從港口A出發,沿北偏東15°方向航行一段距離后到達B處,此時從觀測站O處測得該船位于北偏東60°的方向,則該船航行的距離(即AB的長)為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在四張編號為A,B,C,D的卡片(除編號外,其余完全相同)的正面分別寫上如圖所示正整數后,背面朝上,洗勻放好,現從中隨機抽取一張(不放回),再從剩下的卡片中隨機抽取一張.
(1)請用樹狀圖或列表的方法表示兩次抽取卡片的所有可能出現的結果(卡片用A,B,C,D表示);
(2)我們知道,滿足a2+b2=c2的三個正整數a,b,c成為勾股數,求抽到的兩張卡片上的數都是勾股數的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,將邊長為6cm的正方形ABCD折疊,使點D落在AB邊的中點E處,折痕為FH,點C落在Q處,EQ與BC交于點G,則△EBG的周長是cm.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在ABCD中,AB>AD,按以下步驟作圖:以點A為圓心,小于AD的長為半徑畫弧,分別交AB、AD于點E、F;再分別以點E、F為圓心,大于 EF的長為半徑畫弧,兩弧交于點G;作射線AG交CD于點H,則下列結論中不能由條件推理得出的是( )
A.AG平分∠DAB
B.AD=DH
C.DH=BC
D.CH=DH
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】正方形OABC的邊長為4,對角線相交于點P,拋物線L經過O、P、A三點,點E是正方形內的拋物線上的動點.
(1)建立適當的平面直角坐標系,
①直接寫出O、P、A三點坐標;
②求拋物線L的解析式;
(2)求△OAE與△OCE面積之和的最大值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=8,BC=6,點P在AB上,AP=2,點E、F同時從點P出發,分別沿PA、PB以每秒1個單位長度的速度向點A、B勻速運動,點E到達點A后立刻以原速度沿AB向點B運動,點F運動到點B時停止,點E也隨之停止.在點E、F運動過程中,以EF為邊作正方形EFGH,使它與△ABC在線段AB的同側.設E、F運動的時間為t/秒(t>0),正方形EFGH與△ABC重疊部分面積為S.
(1)當t=1時,正方形EFGH的邊長是 . 當t=3時,正方形EFGH的邊長是 .
(2)當0<t≤2時,求S與t的函數關系式;
(3)直接答出:在整個運動過程中,當t為何值時,S最大?最大面積是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△AOB中,∠AOB=90°,AO=,BO=1,AB的垂直平分線交AB于點E,交射線BO于點F.點P從點A出發沿射線AO以每秒
個單位的速度運動,同時點Q從點O出發沿OB方向以每秒1個單位的速度運動,當點Q到達點B時,點P、Q同時停止運動.設運動的時間為t秒.
(1)當t= 時,PQ∥EF;
(2)若P、Q關于點O的對稱點分別為P′、Q′,當線段P′Q′與線段EF有公共點時,t的取值范圍是 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】圖①是我們常見的地磚上的圖案,其中包含了一種特殊的平面圖形﹣正八邊形.
(1)如圖②,AE是⊙O的直徑,用直尺和圓規作⊙O的內接正八邊形ABCDEFGH(不寫作法,保留作圖痕跡);
(2)在(1)的前提下,連接OD,已知OA=5,若扇形OAD(∠AOD<180°)是一個圓錐的側面,則這個圓錐底面圓的半徑等于
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com