【題目】如圖在單位長度為1的正方形網格中,一段圓弧經過網格的交點A、B、C.
(1)請完成如下操作:
①以點O為坐標原點、豎直和水平方向為軸、網格邊長為單位長,建立平面直角坐標系;
②根據圖形提供的信息,只借助直尺確定該圓弧所在圓的圓心D,并連接AD、CD.(保留作圖痕跡,不寫作法)
(2)請在(1)的基礎上,完成下列填空與計算:
①寫出點的坐標:C 、D ;
②⊙D的半徑= ;(結果保留根號)
③求扇形ADC的面積.(結果保留π)
【答案】(1)圖見解析;(2)①C(6,2),D(2,0);②;③5π
【解析】
(1)根據題意建立平面直角坐標系,然后作出弦AB的垂直平分線,以及BC的垂直平分線,兩直線的交點即為圓心D,連接AD,CD;
(2)①根據第一問畫出的圖形即可得出C及D的坐標;
②在直角三角形AOD中,由OA及OD的長,利用勾股定理求出AD的長,即為圓O的半徑;
③求出∠ADC-90°,再根據扇形面積公式即可求解.
(1)根據題意畫出相應的圖形,如圖所示:
(2)①根據圖形得:C(6,2),D(2,0);
②在Rt△AOD中,OA=4,OD=2,
根據勾股定理得:AD=,
則⊙D的半徑為;
③∵AD=CD,AO=DF=4,OD=CF=2,
∴△AOD≌△DFC,
∴∠ADO=∠DCF,
∴∠ADO+∠CDF=∠DCF +∠CDF=90°,
則∠ADC=90°,
∴S扇形ADC=
故答案為:(2)①(6,2);(2,0);②,③
.
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AC=BC=6.點P在邊AC上運動,過點P作PD⊥AB于點D,以AP、AD為鄰邊作PADE.設□PADE與△ABC重疊部分圖形的面積為y,線段AP的長為x(0<x≤6).
(1)求線段PE的長(用含x的代數式表示).
(2)當點E落在邊BC上時,求x的值.
(3)求y與x之間的函數關系式.
(4)直接寫出點E到△ABC任意兩邊所在直線距離相等時x的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一個不透明的口袋里裝有分別標有漢字“書”、“香”、“校”、“園”的四個小球,除漢字不同之外,小球沒有任何區別,每次摸球前先攪拌均勻.
(1)若從中任取一個球,球上的漢字剛好是“書”的概率為多少?
(2)從中任取一球,不放回,再從中任取一球,請用樹狀圖或列表的方法,求取出的兩個球上的漢字能組成“書香”的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下面是某同學對多項式(x2-4x+2)(x2-4x+6)+4進行因式分解的過程.
解:設x2-4x=y
原式=(y+2)(y+6)+4 (第一步)
= y2+8y+16 (第二步)
=(y+4)2 (第三步)
=(x2-4x+4)2 (第四步)
回答下列問題:
(1)該同學第二步到第三步運用了因式分解的_______.
A.提取公因式 B.平方差公式 C.兩數和的完全平方公式 D.兩數差的完全平方公式
(2)該同學因式分解的結果是否徹底?________.(填“徹底”或“不徹底”)
若不徹底,請直接寫出因式分解的最后結果_________.
(3)請你模仿以上方法嘗試對多項式(x2-2x)(x2-2x+2)+1進行因式分解.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖是二次函數 的圖象的一部分,對稱軸是直線
. 以下四個判斷:①
;②
;③不等式
的解集是
;④若(
,y1),(5,y2)是拋物線上的兩點,則y1<y2。其中正確的是( )
A.①②B.①④C.①③D.②③④
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,⊙C經過原點且與兩坐標軸分別交于點A與點B,點A的坐標為(0,8),M是劣弧BO上任一點,∠BMO=120°,求:
(1)⊙C的半徑;
(2)圓心C的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖點O是等邊內一點,
,∠ACD=∠BCO,OC=CD,
(1)試說明:是等邊三角形;
(2)當時,試判斷
的形狀,并說明理由;
(3)當為多少度時,
是等腰三角形
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線y=﹣x+b與反比例函數的圖象相交于點A(a,3),且與x軸相交于點B.
(1)求a、b的值;
(2)若點P在x軸上,且△AOP的面積是△AOB的面積的,求點P的坐標.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com