精英家教網 > 初中數學 > 題目詳情

【題目】要從甲、乙兩名同學中選出一名,代表班級參加射擊比賽,如圖是兩人最近10次射擊訓練成績的折線統計圖.

(1)已求得甲的平均成績為8環,求乙的平均成績;
(2)觀察圖形,直接寫出甲,乙這10次射擊成績的方差s甲2,s乙2哪個大;
(3)如果其他班級參賽選手的射擊成績都在7環左右,本班應該選 參賽更合適;如果其他班級參賽選手的射擊成績都在9環左右,本班應該選 參賽更合適.

【答案】
(1)

解:乙的平均成績是:(8+9+8+8+7+8+9+8+8+7)÷10=8(環);


(2)

解:根據圖象可知:甲的波動小于乙的波動,則s甲2>s乙2;


(3)

解:如果其他班級參賽選手的射擊成績都在7環左右,本班應該選乙參賽更合適;
如果其他班級參賽選手的射擊成績都在9環左右,本班應該選甲參賽更合適.
故答案為:乙,甲.


【解析】(1)根據平均數的計算公式和折線統計圖給出的數據即可得出答案;
(2)根據圖形波動的大小可直接得出答案;
(3)根據射擊成績都在7環左右的多少可得出乙參賽更合適;根據射擊成績都在9環左右的多少可得出甲參賽更合適.
此題考查了折線統計圖以及圖形波動比較方差.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】要在寬為36m的公路的綠化帶MN(寬為4m)的中央安裝路燈,路燈的燈臂AD的長為3m,且與燈柱CD成120°(如圖所示),路燈采用圓錐形燈罩,燈罩的軸線AB與燈臂垂直.當燈罩的軸線通過公路路面一側的中間時(除去綠化帶的路面部分),照明效果最理想,問:應設計多高的燈柱,才能取得最理想的照明效果?(精確到0.01m,參考數據 ≈1.732)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=4,AD=5,AD,AB,BC分別與⊙O相切于E,F,G三點,過點D作⊙O的切線BC于點M,切點為N,則DM的長為( 。

A.
B.
C.
D.2

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,矩形ABCD中,AB=8,BC=6,P為AD上一點,將△ABP沿BP翻折至△EBP,PE與CD相交于點O,且OE=OD,則AP的長為

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知一次函數y=2x﹣4的圖象與x軸、y軸分別相交于點A、B,點P在該函數的圖象上,P到x軸、y軸的距離分別為d1、d2

(1)當P為線段AB的中點時,求d1+d2的值。
(2)直接寫出d1+d2的范圍,并求當d1+d2=3時點P的坐標。
(3)若在線段AB上存在無數個P點,使d1+ad2=4(a為常數),求a的值。

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】兩個三角板ABC,DEF,按如圖所示的位置擺放,點B與點D重合,邊AB與邊DE在同一條直線上(假設圖形中所有的點,線都在同一平面內).其中,∠C=∠DEF=90°,∠ABC=∠F=30°,AC=DE=6cm.現固定三角板DEF,將三角板ABC沿射線DE方向平移,當點C落在邊EF上時停止運動.設三角板平移的距離為x(cm),兩個三角板重疊部分的面積為y(cm2).

(1)當點C落在邊EF上時,x= cm;
(2)求y關于x的函數解析式,并寫出自變量x的取值范圍;
(3)設邊BC的中點為點M,邊DF的中點為點N.直接寫出在三角板平移過程中,點M與點N之間距離的最小值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,海面上B、C兩島分別位于A島的正東和正北方向.一艘船從A島出發,以18海里/時的速度向正北方向航行2小時到達C島,此時測得B島在C島的南偏東43°.求A、B兩島之間的距離.(結果精確到0.1海里)
【參考數據:sin43°=0.68,cos43°=0.73,tan43°=0.93】

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】閱讀下列材料,并解決相關的問題.
按照一定順序排列著的一列數稱為數列,排在第一位的數稱為第1項,記為a1 , 依此類推,排在第n位的數稱為第n項,記為an
一般地,如果一個數列從第二項起,每一項與它前一項的比等于同一個常數,那么這個數列叫做等比數列,這個常數叫做等比數列的公比,公比通常用字母q表示(q≠0).如:數列1,3,9,27,…為等比數列,其中a1=1,公比為q=3.
(1)等比數列3,6,12,…的公比q為 ,第4項是
(2)如果一個數列a1 , a2 , a3 , a4 , …是等比數列,且公比為q,那么根據定義可得到:=q,=q,=q,…=q.
所以:a2=a1q,a3=a2q=(a1q)q=a1q2 , a4=a3q=(a1q2)q=a1q3 , …
由此可得:an=(用a1和q的代數式表示).
(3)若一等比數列的公比q=2,第2項是10,請求它的第1項與第4項.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】計算(﹣5sin20°)0﹣(﹣2+|﹣24|+

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视