【題目】如圖,Rt△ABC,∠C=90°,點D為AB上的一點,以AD為直徑的⊙O與BC相切于點E,連接AE.
(1)求證:AE平分∠BAC;
(2)若AC=8,OB=18,求BD的長.
【答案】(1)證明見解析;(2)12.
【解析】試題分析:(1)如圖,連接OE.首先證明AC∥OE,推出∠CAE=∠AEO,由OA=OE,推出∠AEO=∠OAE=∠CAE即可證明.
(2)設OE=OA=OD=r,由OE∥AC,得,即
,解方程即可.
試題解析:(1)證明:如圖,連接OE.
∵BC是⊙O切線,∴OE⊥BC,∴∠OEB=90°,∵∠C=90°,∴∠C=∠OEB=90°,∴AC∥OE,∴∠CAE=∠AEO,∵OA=OE,∴∠AEO=∠OAE=∠CAE,∴AE平分∠CAB;
(2)解:設OE=OA=OD=r,∵OE∥AC,∴ ,即
,∴r=6(負根已經舍棄),∴BD=OB﹣OD=18﹣6=12.
科目:初中數學 來源: 題型:
【題目】計算:
(1)()0+(-
)﹣2
(2)利用乘法公式計算:898×902+4
(3)(3x﹣2y)(﹣3x﹣2y)﹣(4y﹣x)
(4)(a+2b﹣3c)(a﹣2b+3c)
(5)先化簡,再求值:[(a+4)2﹣(3a﹣2)a﹣8]+(2a),其中a=3
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了從甲、乙兩人中選拔一人參加射擊比賽,現對他們的射擊成績進行了測試,5次打靶命中的環數如下:
甲:8,7,9,8,8; 乙:9,6,10,8,7;
(1)將下表填寫完整:
平均數 | 中位數 | 方差 | |
甲 | 8 | ||
乙 | 8 | 2 |
(2)根據以上信息,若你是教練,你會選擇誰參加射擊比賽,理由是什么?
(3)若乙再射擊一次,命中8環,則乙這六次射擊成績的方差會 .(填“變大”或“變小”或“不變”)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在中,
,過點
的直線
,
為
邊上一點,過點
作
交直線
于點
,垂足為點
,連結
、
.
(1)求證:;
(2)當點是
中點時,四邊形
是什么特殊四邊形?說明你的理由;
(3)若點是
中點,當四邊形
是正方形時,則
大小滿足什么條件?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某山是某市民周末休閑爬山的好去處,但總有些市民隨手丟垃圾的情況出現.為了美化環境,提高市民的環保意識,某外國語學校某附屬學校青年志愿者協會組織50人的青年志愿者團隊,在周末前往臨某森林公園撿垃圾.已知平均每分鐘男生可以撿3件垃圾,女生可以撿2件垃圾,且該團隊平均每分鐘可以撿130件垃圾.請問該團隊的男生和女生各多少人?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某商店購進一種商品,每件商品進價30元.試銷中發現這種商品每天的銷售量y(件)與每件銷售價x(元)的關系數據如下:
x | 30 | 32 | 34 | 36 |
y | 40 | 36 | 32 | 28 |
(1)已知y與x滿足一次函數關系,根據上表,求出y與x之間的關系式.(不寫出自變量x的取值范圍);
(2)如果商店銷售這種商品,每天要獲得150元,那么每件商品的銷售價應定為多少元?
(3)設該商店每天銷售這種商品所獲利潤為w(元),求出w與x之間的關系式,并求出每件商品銷售價定為多少元時利潤最大?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,正方形ABCD的邊長為4,點G、H分別是BC、CD邊上的點,直線GH與AB、AD的延長線相交于點E、F,連接AG、AH.
(1)當BG=2,DH=3時,則GH:HF= ,∠AGH= °;
(2)若BG=3,DH=1,求DF、EG的長;
(3)設BG=x,DH=y,若△ABG∽△FDH,求y與x之間的函數關系式,并求出y的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,一動點從原點O出發,沿著箭頭所示方向,每次移動1個單位,依次得到點P1(0,1),P2(1,1),P3(1,0),P4(1,﹣1),P5(2,﹣1),P6(2,0),…,則點P2018的坐標是________.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com