【題目】如圖,頂點M在y軸上的拋物線與直線y=x+1相交于A、B兩點,且點A在x軸上,點B的橫坐標為2,連結AM、BM.
(1)求拋物線的函數關系式;
(2)判斷△ABM的形狀,并說明理由;
(3)把拋物線與直線y=x的交點稱為拋物線的不動點.若將(1)中拋物線平移,使其頂點為(m,2m),當m滿足什么條件時,平移后的拋物線總有兩個不動點.
【答案】(1)y=x2﹣1;(2))△ABM為直角三角形,理由詳見解析;(3)當m<時,平移后的拋物線總有兩個不動點.
【解析】
(1)由條件可分別求得A、B的坐標,設出拋物線解析式,利用待定系數法可求得拋物線解析式;
(2)結合(1)中A、B、C的坐標,根據勾股定理可分別求得AB、AM、BM,可得到AB2+AM2=BM2,可判定△ABM為直角三角形;
(3)由條件可寫出平移后的拋物線的解析式,聯立y=x,可得到關于x的一元二次方程,根據根的判別式可求得m的范圍.
(1)∵A點為直線y=x+1與x軸的交點,
∴A(﹣1,0),
又B點橫坐標為2,代入y=x+1可求得y=3,
∴B(2,3),
∵拋物線頂點在y軸上,
∴可設拋物線解析式為y=ax2+c,
把A、B兩點坐標代入可得,
解得,
∴拋物線解析式為y=x2﹣1;
(2)△ABM為直角三角形.理由如:
由(1)拋物線解析式為y=x2﹣1可知M點坐標為(0,﹣1),
∴AM=,AB=
,BM=
,
∴AM2+AB2=2+18=20=BM2,
∴△ABM為直角三角形;
(3)當拋物線y=x2﹣1平移后頂點坐標為(m,2m)時,其解析式為y=(x﹣m)2+2m,即y=x2﹣2mx+m2+2m,
聯立y=x,可得,
消去y整理可得x2﹣(2m+1)x+m2+2m=0,
∵平移后的拋物線總有不動點,
∴方程x2﹣(2m+1)x+m2+2m=0有兩個不等的實數根,
∴△>0,即(2m+1)2﹣4(m2+2m)≥0,
解得m<,
即當m<時,平移后的拋物線總有兩個不動點.
科目:初中數學 來源: 題型:
【題目】風電已成為我國繼煤電、水電之后的第三大電源,風電機組主要由塔桿和葉片組成(如圖1),圖2是從圖1引出的平面圖.假設你站在A處測得塔桿頂端C的仰角是55°,沿HA方向水平前進43米到達山底G處,在山頂B處發現正好一葉片到達最高位置,此時測得葉片的頂端D(D、C、H在同一直線上)的仰角是45°.已知葉片的長度為35米(塔桿與葉片連接處的長度忽略不計),山高BG為10米,BG⊥HG,CH⊥AH,求塔桿CH的高.(參考數據:tan55°≈1.4,tan35°≈0.7,sin55°≈0.8,sin35°≈0.6)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,在中,內角
與外角
的平分線相交于點
,
,
交
于
,交
于
,連接
、
,下列結論:①
;②
;③
垂直平分
;④
.其中正確的是( )
A. ①②④B. ①③④C. ②③④D. ①③
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AOOM,OA=8,點B為射線OM上的一個動點,分別以OB、AB為直角邊,B為直角頂點,在OM兩側作等腰Rt△OBF、等腰Rt△ABE,連接EF交OM于P點,當點B在射線OM上移動時,PB的長度是 ( )
A. 3.6 B. 4 C. 4.8 D. PB的長度隨B點的運動而變化
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知∠AOB的大小為α,P是∠AOB內部的一個定點,且OP=2,點E、F分別是OA、OB上的動點,若△PEF周長的最小值等于2,則α=( )
A. 30°B. 45°C. 60°D. 15°
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知直線lAC:y=﹣交x軸、y軸分別為A、C兩點,直線BC⊥AC交x軸于點B.
(1)求點B的坐標及直線BC的解析式;
(2)將△OBC關于BC邊翻折,得到△O′BC,過點O′作直線O′E垂直x軸于點E,F是y軸上一點,P是直線O′E上任意一點,P、Q兩點關于x軸對稱,當|PA﹣PC|最大時,請求出QF+FC的最小值;
(3)若M是直線O′E上一點,且QM=3,在(2)的條件下,在平面直角坐標系中,是否存在點N,使得以Q、F、M、N四點為頂點的四邊形是平行四邊形?若存在,請直接寫出點N的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com