【題目】把一個足球垂直地面向上踢,(秒)后該足球的高度
(米)適用公式
.
(1)經多少秒時足球的高度為20米?
(2)小明同學說:“足球高度不可能達到21米!”你認為他說得對嗎?請說明理由.
科目:初中數學 來源: 題型:
【題目】探索n×n的正方形釘子板上(n是釘子板每邊上的釘子數,每邊上相鄰釘子間的距離為1),連接任意兩個釘子所得到的不同長度值的線段種數:
當n=2時,釘子板上所連不同線段的長度值只有1與,所以不同長度值的線段只有2種,若用S表示不同長度值的線段種數,則S=2;
當n=3時,釘子板上所連不同線段的長度值只有1, ,2,
,2
五種,比n=2時增加了3種,即S=2+3=5.
(1)觀察圖形,填寫下表:
釘子數(n×n) | S值 |
2×2 | 2 |
3×3 | 2+3 |
4×4 | 2+3+(____) |
5×5 | (________) |
(2)寫出(n-1)×(n-1)和n×n的兩個釘子板上,不同長度值的線段種數之間的關系;(用式子或語言表述均可).
(3)對n×n的釘子板,寫出用n表示S的代數式.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】老師設計了一個數學實驗,給甲、乙、丙三名同學各一張寫有已化為最簡(沒有同類項)的代數式的卡片,規則是兩位同學的代數式相減等于第三位同學的代數式,則實驗成功,甲、乙、丙的卡片如下,丙的卡片有一部分看不清楚了.
(1)計算出甲減乙的結果,并判斷甲減乙能否使實驗成功;
(2)嘉琪發現丙減甲可以使實驗成功,請求出丙的代數式.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】觀察下列三行數:
0,3,8,15,24,…①
2,5,10,17,26,…②
0,6,16,30,48,…③
(1)第①行數按什么規律排的,請寫出來?
(2)第②、③行數與第①行數分別對比有什么關系?
(3)取每行的第個數,求這三個數的和.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,∠AOB=∠DOC=90°,OE平分∠AOD,反向延長射線OE至F.
(1)∠AOD和∠BOC是否互補?說明理由;
(2)射線OF是∠BOC的平分線嗎?說明理由;
(3)反向延長射線OA至點G,射線OG將∠COF分成了4:3的兩個角,求∠AOD.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了響應國家節能減排的號召,鼓勵市民節約用電,我市從2012年7月1日起,居民用電實行“一戶一表”的“階梯電價”,分三個檔次收費,第一檔是用電量不超過180千瓦時實行“基本電價”,第二、三檔實行“提高電價”,具體收費情況如圖的折線圖,請根據圖象回答下列問題;
(1)當用電量是180千瓦時時,電費是__________元;
(2)第二檔的用電量范圍是__________;
(3)“基本電價”是__________元/千瓦時;
(4)小明家8月份的電費是328.5元,這個月他家用電多少千瓦時?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線y=x+3與兩坐標軸交于A,B兩點,拋物線y=﹣x2+bx+c過A、B兩點,且交x軸的正半軸于點C.
(1)直接寫出A、B兩點的坐標;
(2)求拋物線的解析式和頂點D的坐標;
(3)在拋物線上是否存在點P,使得△PAB是以AB為直角邊的直角三角形?若存在,求出所有符合條件的點P的坐標;若不存在,說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在一條筆直的公路上有、
兩地,甲乙兩人同時出發,甲騎自行車從
地到
地,乙騎自行車從
地到
地,到達
地后立即按原路返回
地.如圖是甲、乙兩人離
地的距離
與行駛時間
之間的函數圖象,下列說法中①
、
兩地相距30千米;②甲的速度為15千米/時;③點
的坐標為(
,20);④當甲、乙兩人相距10千米時,他們的行駛時間是
小時或
小時. 正確的個數為( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】我國古代數學的許多發現都曾位居世界前列,其中“楊輝三角”就是一例.如圖,這個三角形的構造法則:兩腰上的數都是1,其余每個數均為其上方左右兩數之和,它給出了(a+b)n(n為正整數)的展開式(按a的次數由大到小的順序排列)的系數規律.例如,在三角形中第三行的三個數1,2,1,恰好對應(a+b)2=a2+2ab+b2展開式中的系數;第四行的四個數1,3,3,1,恰好對應著(a+b)3=a3+3a2b+3ab2+b2展開式中的系數等等.
(1)根據上面的規律,則(a+b)5的展開式=________.
(2)利用上面的規律計算:25﹣5×24+10×23﹣10×22+5×2﹣1=________.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com