【題目】如圖,將二次函數y= (x-2)2+1的圖像沿y軸向上平移得到一條新的二次函數圖像,其中A(1,m),B(4,n)平移后對應點分別是A′、B′,若曲線AB所掃過的面積為12(圖中陰影部分),則新的二次函數對應的函數表達是__________________.
科目:初中數學 來源: 題型:
【題目】如圖,在中,
,
點
在
上,
點
同時從點
出發,分別沿
以每秒
個單位長度的速度向點
勻速運動,點
到達點
后立刻以原速度沿
向點
運動,點
運動到點
時停止,點
也隨之停止.在點
運動過程中,以
為邊作正方形
使它與
在線段
的同鍘.設
運動的時間為
秒,正方形
與
重疊部分面積為
.
當
時,求正方形
的頂點剛好落在線段
上時
的值;
當
時,直接寫出當
為等腰三角形時
的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】拋物線 (
為常數)與
軸交于點
和
與
軸交于點
,點
為拋物線頂點.
(Ⅰ)當時,求點
,點
的坐標;
(Ⅱ)①若頂點在直線
上時,用含有
的代數式表示
;
②在①的前提下,當點的位置最高時,求拋物線的解析式;
(Ⅲ)若,當
滿足
值最小時,求
的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知二次函數的圖像與
軸交于
兩點,與
軸交于
,對稱軸為直線
,頂點為
.
(1)求該二次函數的解析式;
(2)經過、
兩點的直線交拋物線的對稱軸于點
,點
為直線
上方拋物線上的一動點,當點
在什么位置時,
的面積最大?并求此時點
的坐標及
的最大面積;
(3)如圖,平移拋物線,使拋物線的頂點在射線
上移動,點
平移后的對應點為
,點
的對應點為點
,連接
、
,
是否能為等腰三角形?若能,請求出所有符合條件的點
的坐標;若不能,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=ax2-4ax+b交x軸正半軸于A、B兩點,交y軸正半軸于C,且OB=OC=3.
(1) 求拋物線的解析式;
(2) 如圖1,D為拋物線的頂點,P為對稱軸左側拋物線上一點,連接OP交直線BC于G,連GD.是否存在點P,使?若存在,求點P的坐標;若不存在,請說明理由;
(3) 如圖2,將拋物線向上平移m個單位,交BC于點M、N.若∠MON=45°,求m的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知,如圖,在平面直角坐標系中,直線 與
軸交于點A,與
軸交于點B,拋物線
經過A、B兩點,與
軸的另一個交點為C.
(1)直接寫出點A和點B的坐標;
(2)求拋物線的函數解析式;
(3)D為直線AB下方拋物線上一動點;
①連接DO交AB于點E,若DE:OE=3:4,求點D的坐標;
②是否存在點D,使得∠DBA的度數恰好是∠BAC度數2倍,如果存在,求點D 的坐標,如果不存在,說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在正方形中,
、
分別為
、
的中點,連接
、
,
和
交于點
.
(1)如圖1,求證:;
(2)如圖2,作關于
對稱的圖形
,連接
,在不添加任何輔助線的情況下,請直接寫出圖2中四個三角形,使寫出的每個三角形的面積都等于正方形
面積的
.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△AEF中,∠EAF=45°,AG⊥EF于點G,現將△AEG沿AE折疊得到△AEB,將△AFG沿AF折疊得到△AFD,延長BE和DF相交于點C.
(1)試判斷四邊形ABCD的形狀,并給出證明;
(2)連接BD分別交AE、AF于點M、N,將△ABM繞點A逆時針旋轉,使AB與AD重合,得到△ADH,試判斷線段MN、ND、DH之間的數量關系,并說明理由.
(3)若EG=2,GF=3,BM=2,求AG、MN的長.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com