精英家教網 > 初中數學 > 題目詳情

【題目】對于拋物線yx22mx+m2+m2,當﹣1≤x≤2時,函數的最小值為m,則m的值為(

A.B.

C.D.

【答案】A

【解析】

根據拋物線yx22mx+m2+m2,當﹣1≤x≤2時,函數的最小值為m,可以得到該拋物線的對稱軸,然后利用分類討論的方法可以得到m的值,本題得以解決.

解:∵拋物線yx22mx+m2+m2=(xm2+m2,

∴該拋物線的對稱軸是直線xm,

∵當﹣1≤x≤2時,函數的最小值為m,

∴當m≤1時,在﹣1≤x≤2時,yx增大而增大,所以當x=﹣1時,y為最小值m,即(﹣1m2+m2m,得m=﹣1;

當﹣1m2時,當xm時,取得最小值,即m2m,此方程無解;

m≥2時,在﹣1≤x≤2時,yx增大而減小,所以當x2時,y為最小值m,即(2m2+m2m,得m2+;

由上可得,m的值是﹣12+,

故選:A

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,將二次函數y (x2)21的圖像沿y軸向上平移得到一條新的二次函數圖像,其中A(1,m),B(4,n)平移后對應點分別是A′、B′,若曲線AB所掃過的面積為12(圖中陰影部分),則新的二次函數對應的函數表達是__________________

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在直角坐標系中,已知拋物線(a0)x軸交于A、B兩點(A在點B左側),與y軸負半軸交于點C,頂點為D,已知S四邊形ACBD=14

1)求點D的坐標(用僅含c的代數式表示);

2)若tan∠ACB=,求拋物線的解析式.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】定義:點PABC內部或邊上的點(頂點除外),在PAB,PBC,PCA中,若至少有一個三角形與ABC相似,則稱點PABC的自相似點.

例如:圖1,PABC的內部,PBC=APCB=ABC,BCP∽△ABC,故PABC的自相似點.

請你運用所學知識,結合上述材料,解決下列問題:

在平面直角坐標系中,M曲線C上的任意一點,點Nx軸正半軸上的任意一點.

(1) 如圖2,點P是OM上一點,ONP=M, 試說明點P是MON的自相似點; M的坐標是,N的坐標是時,求點P 的坐標;

(2) 如圖3,當M的坐標是N的坐標是時,求MON的自相似點的坐標;

(3) 是否存在點M和點N,使MON無自相似點,?若存在,請直接寫出這兩點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,直線y=-x+3x軸,y軸分別交于B,C兩點,拋物線y=-x2+bx+c經過B,C兩點,點A是拋物線與x軸的另一個交點.

1)求此拋物線的函數解析式;

2)在拋物線上是否存在點P,使SPAB=2SCAB,若存在,求出P點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某校組織學生書法比賽,對參賽作品按A、B、C、D四個等級進行了評定.現隨機取部分學生書法作品的評定結果進行分析,并繪制扇形統計圖和條形統計圖如下:

根據上述信息完成下列問題:

(1)求這次抽取的樣本的容量;

(2)請在圖②中把條形統計圖補充完整;

(3)已知該校這次活動共收到參賽作品750份,請你估計參賽作品達到B級以上(即A級和B級)有多少份?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,矩形EFGH的頂點E,G分別在菱形ABCD的邊AD,BC上,頂點FH在菱形ABCD的對角線BD上.

1)求證:BG=DE;

2)若EAD中點,FH=2,求菱形ABCD的周長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,按以下步驟作圖:①以A為圓心,任意長為半徑作弧,分別交AB,AD于點M,N;②分別以M,N為圓心,以大于MN的長為半徑作弧,兩弧相交于點P;③作AP射線,交邊CD于點Q,若DQ=2QC,BC=3,則平行四邊形ABCD周長為________

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】舍利生生塔位于晉祠南瑞,建于隋開皇年間,宋代重修,清乾隆十六年(1751年)重建.七屋八角,琉璃瓦頂,遠遠望去,高聳的古塔,映襯著藍天白云,甚是壯觀.原塔內每層均有佛像,開48窗,憑窗遠眺,晉祠內外美景可一覽無余.如果在夕陽西下時欣賞寶塔,還會出現——天云錦、滿塔光輝的壯麗景觀,被譽為“寶塔披霞”.某數學“綜合與實踐”小組的同學把“測量舍利生生塔高”作為一項課題活動,他們制定了測量方案,并利用課余時間完成了實地測量,測量結果如表:

課題

測量舍利生生塔高

測量示意圖

說明:某同學在地面上選擇點C,使用手持測角儀,測得此時樓頂A的仰角∠AHEα,沿CB方向前進到點D,測量出C,D之間的距離CDxm,在點D使用手持測角儀,測得此時樓頂A的仰角∠AFEβ

測量數據

α的度數

β的度數

CD的長度

該同學眼睛離地面的距離HC

24°

37°

32m

1.76m

1)請幫助該小組的同學根據上表中的測量數據,求塔高AB.(結果精確到1m;參考數據:sin24°≈0.41cos24°≈0.91,tan24°≈0.45,sin37°≈0.60,cos37°≈0.80tan37°≈0.75

2)該小組要寫出一份完整的課題活動報告,除上表中的項目外,你認為還需要補充哪些項目?(寫出一個即可)

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视