【題目】如圖,AB是⊙O的一條弦,點C是⊙O上一動點,且∠ACB=30°,點E、F分別是AC,BC的中點,直線EF與⊙O交于G、H兩點,若⊙O的半徑為7,則GE+FH的最大值為( )
A.10.5
B.7 -3.5
C.11.5
D.7 -3.5
【答案】A
【解析】當GH為⊙O的直徑時,GE+FH有最大值.
當GH為直徑時,E點與O點重合,
∴AC也是直徑,AC=14.
∵∠ABC是直徑上的圓周角,
∴∠ABC=90°,
∵∠C=30°,
∴AB= AC=7.
∵點E、F分別為AC、BC的中點,
∴EF= AB=3.5,
∴GE+FH=GH-EF=14-3.5=10.5.
所以答案是:A.
【考點精析】根據題目的已知條件,利用三角形中位線定理和圓心角、弧、弦的關系的相關知識可以得到問題的答案,需要掌握連接三角形兩邊中點的線段叫做三角形的中位線;三角形中位線定理:三角形的中位線平行于三角形的第三邊,且等于第三邊的一半;在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦也相等;在同圓或等圓中,同弧等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.
科目:初中數學 來源: 題型:
【題目】如圖,已知△ABC中, 厘米,
厘米,點D為AB的中點.如果點P在線段BC上以4厘米/秒的速度由B點向C點運動,同時,點Q在線段CA上由C點向A點運動.當點Q的運動速度為_______ 厘米/秒時,能夠在某一時刻使△BPD與△CQP全等.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠B=45°,AD⊥BC于點D,以D為圓心DC為半徑作⊙D交AD于點G,過點G作⊙D的切線交AB于點F,且F恰好為AB中點.
(1)求tan∠ACD的值.
(2)連結CG并延長交AB于點H,若AH=2,求AC的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在正方形ABCD中,AD=5,點E、F是正方形ABCD內的兩點,且AE=FC=3,BE=DF=4,則EF的長為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AC,BD為圓O的兩條互相垂直的直徑,動點P從圓心O出發,沿O→C→D→O的路線作勻速運動,設運動時間為t秒,∠APB的度數為y度,那么表示y與t之間函數關系的圖象大致為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知△ABC中,∠B=90°,AB=16cm,BC=12cm,P、Q是△ABC邊上的兩個動點,其中點P從點A開始沿A→B方向運動,且速度為每秒1cm,點Q從點B開始沿B→C→A方向運動,且速度為每秒2cm,它們同時出發,設出發的時間為t秒.
(1)出發2秒后,求△PBQ的面積;
(2)當點Q在邊BC上運動時,出發幾秒鐘后,△PQB能形成等腰三角形?
(3)當點Q在邊CA上運動時,求能使△BCQ成為等腰三角形的運動時間.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,的頂點都在邊長為1的正方形方格紙的格點上,將
向左平移2格,再向上平移4格.
(1)在圖中畫出平移后的三角形;
(2)在圖中畫出三角形的高
、中線
;
(3)圖中線段與
的關系是_____;
(4)的面積是_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀理解:李華是一個勤奮好學的學生,他常常通過書籍、網絡等渠道主動學習各種知識.下面是他從網絡搜到的兩位數乘11的速算法,其口訣是:“頭尼一拉,中間相加,滿十進一”.例如:①.計算過程:
兩數拉開,中間相加,即
,最后結果
;②
.計算過程:
兩數分開,中間相加,即
,滿十進一,最后結果
.
(1)計算:① , ②
_____ ;
(2)若某一個兩位數十位數字是,個位數字是
,將這個兩位數乘
,得到一個三位數,則根據上述的方法可得,該三位數百位數字是____,十位數字是_____, 個位數字是_____ ; ( 用含
的化數式表示)
(3)請你結合(2)利用所學的知識解釋其中原理.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】圖①為北斗七星的位置圖,圖②將北斗七星分別標為A,B,C,D,E,F,G,將A,B,C,D,E,F順次首尾連接,若AF恰好經過點G,且AF∥DE,∠B=∠C+10°,∠D=∠E=105°.
(1)求∠F的度數;
(2)計算∠B-∠CGF的度數是______;(直接寫出結果)
(3)連接AD,∠ADE與∠CGF滿足怎樣數量關系時,BC∥AD,并說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com