精英家教網 > 初中數學 > 題目詳情

【題目】如圖,AB⊙O的直徑,點C⊙O上一點,AD與過點C的切線垂直,垂足為點D,直線DCAB的延長線相交于點P,弦CE平分∠ACB,交AB于點F,連接BE

1)求證:AC平分∠DAB;

2)求證:△PCF是等腰三角形;

3)若∠BEC=30°,求證:以BCBE,AC邊的三角形為直角三角形.

【答案】詳見解析.

【解析】試題分析:1)連接OC,可證得OCAD,結合條件可證得∠DAC=CAO,可證得結論;
2)由條件可得∠BCP=CAB,ACF=BCF,結合外角性質可得∠CFP=PCF,可證得結論;
3連接AE,可知根據條件可得到BEAB的關系,以及的關系,再結合勾股定理的逆定理可得到結論.

試題解析:證明:(1)如圖1,連接OC

DPO的切線,

OCDP

又∵ADDP,

OCAD

∴∠DAC=ACO

OA=OC,

∴∠ACO=CAO,

∴∠DAC=CAO,

AC平分∠DAB;

(2)PDO的切線,

∴∠BCP=CAB,

又∵CE平分∠ACB

∴∠ACF=BCF,

∴∠CAF+ACF=BCF+PCB,

即∠CFP=PCF,

PC=PF,即△PCB為等腰三角形;

(2)如圖2,連接AE,

CE平分∠ACB

∴∠ACE=BCE

AE=BE

又∵AB為直徑,

∴在RtABC,

∴以BCBE,AC邊的三角形為直角三角形

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】在平面直角坐標系中,已知直線ly=﹣x+2x軸于點A,交y軸于點B,直線l上的點P(m,n)在第一象限內,設AOP的面積是S

1)寫出Sm之間的函數表達式,并寫出m的取值范圍.

2)當S3時,求點P的坐標.

3)若直線OP平分AOB的面積,求點P的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖所示,在ABCD中,ECD延長線上的一點,BEAD交于點F,DECD.

(1)求證:△ABF∽△CEB

(2)若△DEF的面積為2,求ABCD的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某中學有庫存1800套舊桌凳,修理后捐助貧困山區學校.現有甲,乙兩個木工組都想承攬這項業務.經協商后得知:甲木工組每天修理的桌凳套數是乙木工組每天修理桌凳套數的,甲木工組單獨修理這批桌凳的天數比乙木工組單獨修理這批桌凳的天數多10天,甲木工組每天的修理費用是600元,乙木工組每天的修理費用是800元.

1)求甲,乙兩木工組單獨修理這批桌凳的天數;

2)現有三種修理方案供選擇:方案一,由甲木工組單獨修理這批桌凳;方案二,由乙木工組單獨修理這批桌凳;方案三,由甲,乙兩個木工組共同合作修理這批桌凳.請計算說明哪種方案學校付的修理費最少.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在直線L上依次擺放著七個正方形,已知斜放置的三個正方形的面積分別為1、2、3,正放置的四個正方形的面積依次是S1、S2、S3、S4 , S1+2S2+2S3+S4=(

A. 5 B. 4 C. 6 D. 10

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】二次函數y=ax2+bx+c (a≠0)的圖象如圖所示,對稱軸是x=-1.下列結論:①ab>0;②b2>4ac;③a-b+2c<0;④8a+c<0.其中正確的是( )

A. ③④ B. ①②③ C. ①②④ D. ①②③④

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,拋物線m:y=ax2+b(a<0,b>0)與x軸于點A、B(點A在點B的左側),與y軸交于點C.將拋物線m繞點B旋轉180°,得到新的拋物線n,它的頂點為C1,與x軸的另一個交點為A1.若四邊形AC1A1C為矩形,則a,b應滿足的關系式為( 。

A. ab=﹣2 B. ab=﹣3 C. ab=﹣4 D. ab=﹣5

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】定義:在平面直角坐標系中,O為坐標原點,設點P的坐標為(x,y),當x<0時,點P的變換點P′的坐標為(﹣x,y);當x≥0時,點P的變換點P′的坐標為(﹣y,x).

(1)若點A(2,1)的變換點A′在反比例函數y=的圖象上,則k=   ;

(2)若點B(2,4)和它的變換點B'在直線y=ax+b上,則這條直線對應的函數關系式為   BOB′的大小是   度.

(3)點P在拋物線y=x2﹣2x﹣3的圖象上,以線段PP′為對角線作正方形PMP'N,設點P的橫坐標為m,當正方形PMP′N的對角線垂直于x軸時,求m的取值范圍.

(4)拋物線y=(x﹣2)2+nx軸交于點C,D(點C在點D的左側),頂點為E,點P在該拋物線上.若點P的變換點P′在拋物線的對稱軸上,且四邊形ECP′D是菱形,求n的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,函數(x>0)(x>0)的圖象分別是.設點P上,PAy軸交于點APBx軸,交于點BPAB的面積為(

A. B. C. D.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视