【題目】如圖,在平面直角坐標系中,矩形OABC的頂點O是坐標原點,OA、OC分別在x軸、y軸的正半軸上,且OA=5,OC=4.
(1)如圖①,將矩形沿對角線OB折疊,使得點A落在點D處,OD與CB相交于點E,請問重疊部分△OBE是什么三角形?說明你的理由:并求出這個三角形的面積;
(2)如圖②,點E、F分別是OC、OA邊上的點,將△OEF沿EF折疊,使得點O正好落在BC邊上的D點,過點D作DH⊥OA,交EF于點G,交OA于點H,若CD=2,求點G的坐標;
(3)如圖③,照(2)中條件,當點E、F在OC、OA上移動時,點D也在邊BC上隨之移動,請直接寫出BD的取值范圍.
【答案】(1)是等腰三角形,理由見解析;
;(2)
;(3)1≤BD≤3
【解析】
(1)根據折疊的性質和矩形的性質,得出,
,進而得到
是等腰三角形,再利用勾股定理求出EB的長,進而求面積即可;
(2)易得點G的橫坐標為2,根據折疊的性質和DH⊥OA,得出,再在
中利用勾股定理求出DG的長即可得到點G的縱坐標;
(3)分兩種情況考慮:①當點E運動到與點C重合時;②當點F運動到與點A重合時,分別求出BD的值,即可得到BD的取值范圍.
(1)是等腰三角形,理由如下:
如下圖,
圖形折疊
矩形
即
是等腰三角形
設,則
在中,
求得
(2)如下圖,
∵圖形折疊
,
是等腰三角形
設,則
在中
,求得
即
(3)①當點E運動到與點C重合時,如下圖:
此時,CD=OC=4,則BD=BC-CD=1;
②當點F運動到與點A重合時,如下圖:
此時,AD=OA=5,在Rt△ABD中,BD==
=3,
∴BD的取值范圍為1≤BD≤3.
科目:初中數學 來源: 題型:
【題目】某青春黨支部在精準扶貧活動中,給結對幫扶的貧困家庭贈送甲、乙兩種樹苗讓其栽種.已知乙種樹苗的價格比甲種樹苗貴10元,用480元購買乙種樹苗的棵數恰好與用360元購買甲種樹苗的棵數相同.
(1)求甲、乙兩種樹苗每棵的價格各是多少元?
(2)在實際幫扶中,他們決定再次購買甲、乙兩種樹苗共50棵,此時,甲種樹苗的售價比第一次購買時降低了10%,乙種樹苗的售價不變,如果再次購買兩種樹苗的總費用不超過1500元,那么他們最多可購買多少棵乙種樹苗?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】大數學家歐拉非常推崇觀察能力,他說過,今天已知的許多數的性質,大部分是通過觀察發現的,歷史上許多大家,都是天才的觀察家,化歸就是將面臨的新問題轉化為已經熟悉的規范問題的數學方法,這是一種具有普遍適用性的數學思想方法.如多項式除以多項式可以類比于多位數的除法進行計算:
請用以上方法解決下列問題:
(1)計算:(x3+2x2﹣3x﹣10)÷(x﹣2);
(2)若關于x的多項式2x4+5x3+ax2+b能被二項式x+2整除,且a,b均為自然數,求滿足以上條件的a,b的值及相應的商.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:二次函數y=x2+2x+3與一次函數y=3x+5.
(1)兩個函數圖象相交嗎?若相交,有幾個交點?
(2)將直線y=3x+5向下平移k個單位,使直線與拋物線只有一個交點,求k的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校決定加強羽毛球、籃球、乒乓球、排球、足球五項球類運動,每位同學必須且只能選擇一項球類運動,對該校學生隨機抽取進行調查,根據調查結果繪制了如下不完整的頻數分布表和扇形統計圖:
運動項目 | 頻數(人數) |
羽毛球 | 30 |
籃球 | |
乒乓球 | 36 |
排球 | |
足球 | 12 |
請根據以上圖表信息解答下列問題:
(1)頻數分布表中的 ,
;
(2)在扇形統計圖中,“排球”所在的扇形的圓心角為 度;
(3)全校有多少名學生選擇參加乒乓球運動?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀:我們約定,在平面直角坐標系中,經過某點且平行于坐標軸或平行于兩坐標軸夾角平分線的直線,叫該點的“特征線”.例如,點M(1,3)的特征線有:x=1,y=3,y=x+2,y=x+4.如圖,在平面直角坐標系中有正方形OABC,點B在第一象限,A、C分別在x軸和y軸上,拋物線經過B.C兩點,頂點D在正方形內部.
(1)寫出點M(2,3)任意兩條特征線___________________
(2)若點D有一條特征線是y=x+1,求此拋物線的解析式________________________
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,矩形紙片ABCD中,點E是AD的中點,且AE=1,連接BE,分別以B、E為圓心,以大于的長為半徑作弧,兩弧交于點M、N,若直線MN恰好過點C,則AB的長度為( 。
A.B.
C.
D.2
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某市從不同學校隨機抽取100名初中生對“使用數學教輔用書的冊數”進行調查,統計結果如下:
冊數 | 0 | 1 | 2 | 3 |
人數 | 10 | 20 | 30 | 40 |
關于這組數據,下列說法正確的是( 。
A.眾數是2冊B.中位數是2冊
C.平均數是3冊D.方差是1.5
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】“校園安全”越來越受到人們的關注,我市某中學對部分學生就校園安全知識的了解程度,采用隨機抽樣調查的方式,并根據收集到的信息進行統計,繪制了下面兩幅尚不完整的統計圖.根據圖中信息回答下列問題:
(1)接受問卷調查的學生共有______人,條形統計圖中m的值為______;
(2)扇形統計圖中“了解很少”部分所對應扇形的圓心角的度數為______;
(3)若該中學共有學生1800人,根據上述調查結果,可以估計出該學校學生中對校園安全知識達到“非常了解”和“基本了解”程度的總人數為______人;
(4)若從對校園安全知識達到“非常了解”程度的2名男生和2名女生中隨機抽取2人參加校園安全知識競賽,請用列表或畫樹狀圖的方法,求恰好抽到1名男生和1名女生的概率.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com