【題目】如圖,和
都是等邊三角形,連接
、
,
與
相交于點
.
(1)求證;
(2)
.
【答案】(1)證明見解析;(2)60.
【解析】
(1)利用SAS定理證明≌
,從而求解;(2)利用全等三角形的性質求得
,然后根據三角形內角和求得∠BFA=180°-(∠BAF+∠ABF),根據等量代換求得∠BFA =180°-(∠BAC+∠ABC),然后利用等邊三角形的性質求解.
解:(1)在和
中
∴≌
(
)
∴
(2)由≌
得
∴∠BFA=180°-(∠BAF+∠ABF)
=180°-(∠BAC+∠CAD+∠ABF)
=180°-(∠BAC+∠CBE+∠ABF)
=180°-(∠BAC+∠ABC)
∵△ABC為等邊三角形
∴∠BAC=∠ABC=60°
∴∠BFA=180°-(60°+60°)=60°
故答案為:60
科目:初中數學 來源: 題型:
【題目】如圖,在每個小正方形的邊長為1的網格中,點A,B,C均在格點上.
(Ⅰ)△ABC的面積等于_____;
(Ⅱ)若四邊形DEFG是正方形,且點D,E在邊CA上,點F在邊AB上,點G在邊BC上,請在如圖所示的網格中,用無刻度的直尺,畫出點E,點G,并簡要說明點E,點G的位置是如何找到的(不要求證明)_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】若中學生體質健康綜合評定成績為x分,滿分為100分.規定:85≤x≤100為A級,75≤x<85為B級,60≤x<75為C級,x<60為D級.現隨機抽取某中學部分學生的綜合評定成績,整理繪制成如下兩幅不完整的統計圖.
請根據圖中的信息,解答下列問題:
(1)在這次調查中,一共抽取了 名學生;
(2)a= %;C級對應的圓心角為 度.
(3)補全條形統計圖;
(4)若該校共有2000名學生,請你估計該校D級學生有多少名?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB是半圓O的直徑,C是半圓O上的一點,CF切半圓O于點C,BD⊥CF于為點D,BD與半圓O交于點E.
(1)求證:BC平分∠ABD.
(2)若DC=8,BE=4,求圓的直徑.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,MN是⊙O的直徑,點A是半圓上的三等分點,點B是劣弧AN的中點,點P是直徑MN上一動點.若MN=2,AB=1,則△PAB周長的最小值是( 。
A. 2+1 B.
+1 C. 2 D. 3
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】快車和慢車分別從A市和B市兩地同時出發,勻速行駛,先相向而行,慢車到達A市后停止行駛,快車到達B市后,立即按原路原速度返回A市(調頭時間忽略不計),結果與慢車同時到達A市.快、慢兩車距B市的路程y1、y2(單位:km)與出發時間x(單位:h)之間的函數圖像如圖所示.
(1)A市和B市之間的路程是 km;
(2)求a的值,并解釋圖中點M的橫坐標、縱坐標的實際意義;
(3)快車與慢車迎面相遇以后,再經過多長時間兩車相距20 km?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】等腰Rt△ABC,點D為斜邊AB上的中點,點E在線段BD上,連結CD,CE,作AH⊥CE,垂足為H,交CD于點G,AH的延長線交BC于點F.
(1)求證:△ADG≌△CDE.
(2)若點H恰好為CE的中點,求證:∠CGF=∠CFG.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在直角坐標系中,矩形OABC的頂點O與坐標原點重合,A、C分別在坐標軸上,點B的坐標為(4,2),直線交AB,BC分別于點M,N,反比例函數
的圖象經過點M,N.
(1)求反比例函數的解析式;
(2)若點P在y軸上,且△OPM的面積與四邊形BMON的面積相等,求點P的坐標.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com