【題目】如圖,在直角坐標系中,點A(0,6),B(8,0),點C是線段AB的中點,CD⊥OB交OB于D,Rt△EFH的斜邊EH在射線AB上,頂點F在射線AB的左側,EF∥OA,點E從點A出發,以每秒1個單位的速度向B運動,到點B停止,AE=EF,運動時間為t(s).
(1)在Rt△EFH中,EF= ,EH= ,點F坐標為( , )(用含t的代數式表示)
(2)t為何值時,H與C重合?
(3)設△EFH與△CDB重疊部分圖形的面積為S(S>0),求S與t的函數關系式。
(4)在整個運動過程中,Rt△EFH掃過的面積是多少?
【答案】(1)EF=t,EH=點F坐標為
;
(2)t=時,H與C重合;
(3)當時,
,當
時,
,當
時,
(4)Rt△EFH掃過的面積是.
【解析】試題分析:(1)作EM⊥OA垂足為M,由△EFH∽△AOB,得,可以求出EH,由EM∥OB,得
,可以解決點F坐標.
(2)根據AE+EH=AC,列出方程即可解決.
(3)分三種情形:①如圖2中,FH與CD交于點M,當時,②如圖3中,
<t≤5時,S=S△CDB=6,③如圖4中,當5<t≤10時,畫出圖象求出重疊部分面積即可.
(4)如圖5中,在整個運動過程中Rt△EFH掃過的面積=S△AFH=FH(AO+BF),由此即可計算.
試題解析:(1)如圖1中,作EM⊥OA垂足為M,
∵AE=EF=t,AO=6,BO=8,∠AOB=90°,
∴AB==10.
∵∠AOB=∠EFH=90°,∠EHF=∠ABO,
∴△EFH∽△AOB,
∴,即
,
∴EH=t,
∵EM∥OB,
∴,
∴AM=t,EM=
t,
∴點F坐標(t,6-
t).
(2)如圖2中,當點H與點C重合時,
AE+EH=AC,
∴t+t=5,
∴t=
∴t=時,點H與點C重合.
(3)當點H與點B重合時,AE+EH=AB,
∴t+t=10,
∴t=,
當點E與點C重合時,t=5,
當點E與點B重合時,t=10,
①如圖2中,FH與CD交于點M,當≤t≤
時,
∵CH=EH-EC=EH-(AC-AE)=t-5+t=
t-5.CM=
CH=
t-3,MH=
CH=
t-4,
∴S=CMMH=
(
t-3)(
t-4)=
t2-
t+6.
②如圖3中, <t≤5時,S=S△CDB=6,
③如圖4中,當5<t≤10時,
∵EB=AB-AE=10-t,EM=EB=6-
t,BM=
EB=8-
t,
∴S=EMMB=
(6-
t)(8-
t)=
(10-t)2.
綜上所述: ,
,
(4)如圖5中,在整個運動過程中Rt△EFH掃過的面積=S△AFH=FH(AO+BF)=
×
×16=
.
科目:初中數學 來源: 題型:
【題目】利用因式分解簡便計算57×99+44×99-99正確的是()
A. 99×(57+44)=99×101=9999
B. 99×(57+44-1)=99×100=9900
C. 99×(57+44+1)=99×102=10096
D. 99×(57+44-99)=99×2=198
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】今年“國慶節”和“中秋節”雙節期間,某微信群規定,群內的每個人都要發一個紅包,并保證群內其他人都能搶到且自己不能搶自己發的紅包,若此次搶紅包活動,群內所有人共收到90個紅包,則該群一共有_____人.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,l1反映了甲離開A地的時間與離A地的距離的關系l2反映了乙離開A地的時間與離開A地距離之間的關系,根據圖象填空:
(1)當時間為0時,甲離A地千米;
(2)當時間為時,甲、乙兩人離A地距離相等;
(3)圖中P點的坐標是;
(4)l1對應的函數表達式是:S1=;
(5)當t=2時,甲離A地的距離是千米;
(6)當S=28時,乙離開A地的時間是時.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】黨的“十六大”報告提出全面建設小康社會,加快推進社會主義現代化,力爭國民經濟總產值到2020年比2000年翻兩翻,以每十年為基準計算,增長率為x,則( 。
A. (1+x)2=2B. (1+x)2=4
C. (1+x)2+2(1+x)=4D. 1+2x=2
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(本題滿分8分)如圖,⊙O的直徑AC與弦BD相交于點F,點E是DB延長線上一點,
∠EAB=∠ADB.
(1)求證:EA是⊙O的切線;
(2)已知點B是EF的中點,求證:以A、B、C為頂點的三角形與△AEF相似;
(3)在(2)的條件下,已知AF=4,CF=2,求AE的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】我市某中學七、八年級各選派10名選手參加學校舉辦的環保知識競賽,計分采用10分制,選手得分均為整數,成績達到6分或6分以上為合格,達到9分或10分為優秀,這次競賽后,七、八年級兩支代表隊選手成績分布的條形統計圖和成績統計分析表(不完整)如下所示:
隊別 | 平均分 | 中位數 | 方差 | 合格率 | 優秀率 |
七年級 | m | 3.41 | 90% | 20% | |
八年級 | 7.1 | n | 80% | 10% |
(1)觀察條形統計圖,可以發現:八年級成績的標準差 , 七年級成績的標準差(填“>”、“<”或“=”),表格中m= , n=;
(2)計算七年級的平均分;
(3)有人說七年級的合格率、優秀率均高于八年級,所以七年級隊成績比八年級隊好,但也有人說八年級隊成績比七年級隊好.請你給出兩條支持八年級隊成績好的理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com