【題目】如圖1,在△ABC中,∠BAC=90°,AB=AC,D為邊AB上一點,連接CD,在線段CD上取一點E,以AE為直角邊作等腰直角△AEF,使∠EAF=90°,連接BF交CD的延長線于點P.
(1)探索:CE與BF有何數量關系和位置關系?并說明理由;
(2)如圖2,若AB=2,AE=1,把△AEF繞點A順時針旋轉至△AE'F′,當∠E′AC=60°時,求BF′的長.
【答案】(1)CE=BF,CE⊥BF,理由見解析;(2)
【解析】
(1)由“SAS”可證△AEC≌△AFB,可得CE=BF,∠ABF=∠ACE,進而可得CE⊥BF;
(2)過點E'作E'H⊥AC,連接E'C,由直角三角形的性質和勾股定理可求E'C的長,由“SAS”可證△F'AB≌△E'AC,可得BF'=CE'=.
(1)CE=BF,CE⊥BF,理由如下:
∵∠BAC=∠EAF=90°,
∴∠EAC=∠FAB,
又∵AE=AF,AB=AC,
∴△AEC≌△AFB(SAS)
∴CE=BF,∠ABF=∠ACE,
∵∠ADC=∠BDP,
∴∠BPD=∠CAD=90°,
∴CE⊥BF;
(2)過點E'作E'H⊥AC,連接E'C,
∵把△AEF繞點A順時針旋轉至△AE'F′,
∴AF=AE=AE'=AF'=1,∠BAF'=∠E'AC=60°,
∵∠E'AC=60°,∠AHE'=90°,
∴∠AE'H=30°,
∴AH=AE'=
,E'H=
AH=
,
∴HC=AC﹣AH=,
∴E'C==
,
∵AF'=AE',∠F'AB=∠E'AC=60°,AB=AC,
∴△F'AB≌△E'AC(SAS)
∴BF'=CE'=.
科目:初中數學 來源: 題型:
【題目】如圖,反比例函數y=(x>0)的圖象經過Rt△BOC斜邊上的中點A,與邊BC交于點D,連接AD,則△ADB的面積為( )
A.12B.16C.20D.24
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】定義:在平面直角坐標系中,對于任意兩點,
,若點
滿足
,
,那么稱點
是點
,
的融合點.
例如:,
,當點
滿是
,
時,則點
是點
,
的融合點,
(1)已知點,
,
,請說明其中一個點是另外兩個點的融合點.
(2)如圖,點,點
是直線
上任意一點,點
是點
,
的融合點.
①試確定與
的關系式.
②若直線交
軸于點
,當
為直角三角形時,求點
的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,A是反比例函數y=(x>0)圖象上一點,以OA為斜邊作等腰直角△ABO,將△ABO繞點O以逆時針旋轉135°,得到△A1B1O,若反比例函數y=
的圖象經過點B1,則k的值是_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線(a≠0)交x軸于A、B兩點,A點坐標為(3,0),與y軸交于點C(0,4),以OC、OA為邊作矩形OADC交拋物線于點G.
(1)求拋物線的解析式;
(2)拋物線的對稱軸l在邊OA(不包括O、A兩點)上平行移動,分別交x軸于點E,交CD于點F,交AC于點M,交拋物線于點P,若點M的橫坐標為m,請用含m的代數式表示PM的長;
(3)在(2)的條件下,連結PC,則在CD上方的拋物線部分是否存在這樣的點P,使得以P、C、F為頂點的三角形和△AEM相似?若存在,求出此時m的值,并直接判斷△PCM的形狀;若不存在,請說明理由。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某單位800名職工積極參加向貧困地區學校捐書活動,為了解職工的捐書數量,采用隨機抽樣的方法抽取30名職工的捐書數量作為樣本,對他們的捐書數量進行統計,統計結果共有4本、5本、6本、7本、8本五類,分別用A、B、C、D、E表示,根據統計數據繪制成了如圖所示的不完整的條形統計圖,
由圖中給出的信息解答下列問題:
(1)補全條形統計圖;
(2)求這30名職工捐書本數的平均數,寫出眾數和中位數;
(3)估計該單位800名職工共捐書多少本?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,一農戶要建一個矩形豬舍,豬舍的一邊利用長為15m的住房墻,另外三邊用27m長的建筑材料圍成,為方便進出,在垂直于住房墻的一邊留一個1m寬的門,所圍矩形豬舍的長,寬分別為多少米時,豬舍面積為96m2?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某商店購進了一種新款小電器,為了尋找合適的銷售價格,進行了為期5周的試營銷,試營銷的情況如表所示:
第1周 | 第2周 | 第3周 | 第4周 | 第5周 | |
售價/(元/臺) | 50 | 40 | 60 | 55 | 45 |
銷售/臺 | 360 | 420 | 300 | 330 | 390 |
已知該款小電器的進價每臺30元,設該款小電器每臺的售價為x元,每周的銷量為y臺.
(1)觀察表中的數據,推斷y與x滿足什么函數關系,并求出這個函數關系式;
(2)若想每周的利潤為9000元,則其售價應定為多少元?
(3)若每臺小電器的售價不低于40元,但又不能高于進價的2倍,則如何定價才能更快地減少庫存?此時每周最多可銷售多少臺?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,P是直線y=2上的一個動點,⊙P的半徑為1,直線OQ切⊙P于點Q,則線段OQ取最小值時,Q點的坐標為_____.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com