【題目】甲、乙兩名隊員參加射擊訓練,成績分別被制成下列兩個統計圖:
根據以上信息,整理分析數據如下:
平均成績/環 | 中位數/環 | 眾數/環 | 方差 | |
甲 | a | 7 | 7 | 1.2 |
乙 | 7 | b | 8 | c |
(1)寫出表格中a,b,c的值;
(2)分別運用表中的四個統計量,簡要分析這兩名隊員的射擊訓練成績.若選派其中一名參賽,你認為應選哪名隊員?
【答案】
(1)
解:甲的平均成績a= =7(環),
∵乙射擊的成績從小到大重新排列為:3、4、6、7、7、8、8、8、9、10,
∴乙射擊成績的中位數b= =7.5(環),
其方差c= ×[(3﹣7)2+(4﹣7)2+(6﹣7)2+2×(7﹣7)2+3×(8﹣7)2+(9﹣7)2+(10﹣7)2]
= ×(16+9+1+3+4+9)
=4.2
(2)
解:從平均成績看甲、乙二人的成績相等均為7環,從中位數看甲射中7環以上的次數小于乙,從眾數看甲射中7環的次數最多而乙射中8環的次數最多,從方差看甲的成績比乙的成績穩定;
綜合以上各因素,若選派一名隊員參加比賽的話,可選擇乙參賽,因為乙獲得高分的可能更大
【解析】(1)利用平均數的計算公式直接計算平均分即可;將乙的成績從小到大重新排列,用中位數的定義直接寫出中位數即可;根據乙的平均數利用方差的公式計算即可;(2)結合平均數和中位數、眾數、方差三方面的特點進行分析.
科目:初中數學 來源: 題型:
【題目】如圖,將一塊等腰直角三角板ABC放置在平面直角坐標系中,∠ACB=90°,AC=BC,點A在y軸的正半軸上,點C在x軸的負半軸上,點B在第二象限.
(1)若AC所在直線的函數表達式是y=2x+4.
①求AC的長;
②求點B的坐標;
(2)若(1)中AC的長保持不變,點A在y軸的正半軸滑動,點C隨之在x軸的負半軸上滑動.在滑動過程中,點B與原點O的最大距離是 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,直線y= x與雙曲線y=
相交于A,B兩點,C是第一象限內雙曲線上一點,連接CA并延長交y軸于點P,連接BP,BC.若△PBC的面積是20,則點C的坐標為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線y=2x與反比例函數y= 在第一象限內的圖象交于點A(m,2),將直線y=2x向下平移后與反比例函數y=
在第一象限內的圖象交于點P,且△POA的面積為2.
(1)求k的值.
(2)求平移后的直線的函數解析式.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,以BC為直徑的⊙O交斜邊AB于點M,若H是AC的中點,連接MH.
(1)求證:MH為⊙O的切線.
(2)若MH= ,tan∠ABC=
,求⊙O的半徑.
(3)在(2)的條件下分別過點A、B作⊙O的切線,兩切線交于點D,AD與⊙O相切于N點,過N點作NQ⊥BC,垂足為E,且交⊙O于Q點,求線段NQ的長度.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知拋物線y=x2+bx+c過A,B,C三點,點A的坐標是(3,0),點C的坐標是(0,﹣3),動點P在拋物線上.
(1)b= , c= , 點B的坐標為;(直接填寫結果)
(2)是否存在點P,使得△ACP是以AC為直角邊的直角三角形?若存在,求出所有符合條件的點P的坐標;若不存在,說明理由;
(3)過動點P作PE垂直y軸于點E,交直線AC于點D,過點D作x軸的垂線.垂足為F,連接EF,當線段EF的長度最短時,求出點P的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校為組織代表隊參加市“拜炎帝、誦經典”吟誦大賽,初賽后對選手成績進行了整理,分成5個小組(x表示成績,單位:分),A組:75≤x<80;B組:80≤x<85;C組:85≤x<90;D組:90≤x<95;E組:95≤x<100.并繪制出如圖兩幅不完整的統計圖.
請根據圖中信息,解答下列問題:
(1)參加初賽的選手共有名,請補全頻數分布直方圖;
(2)扇形統計圖中,C組對應的圓心角是多少度?E組人數占參賽選手的百分比是多少?
(3)學校準備組成8人的代表隊參加市級決賽,E組6名選手直接進入代表隊,現要從D組中的兩名男生和兩名女生中,隨機選取兩名選手進入代表隊,請用列表或畫樹狀圖的方法,求恰好選中一名男生和一名女生的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某工廠現在平均每天比原計劃多生產25個零件,現在生產600個零件所需時間與原計劃生產450個零件所需時間相同,原計劃平均每天生產多少個零件?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com