精英家教網 > 初中數學 > 題目詳情
如圖,Rt△ADE、Rt△BDF和正方形EDFC組成一個大直角三角形ABC,若AD=12cm,BD=10cm,那么圖中陰影部分的面積是   
【答案】分析:設正方形的邊長為a,由ED∥BC,DF∥AC,得到ED:BC=AD:AB,DF:AC=DB:AB,可求得BC=a,AC=a,在Rt△ABC中,利用勾股定理可得到a2=,再利用三角形的面積公式得S陰影部分=•AE•DE+•DF•BF,代入計算即可得到陰影部分的面積.
解答:解:設正方形的邊長為a,
∵正方形DECF內接于Rt△ABC中,即ED∥BC,DF∥AC,
∴△AFD∽△ACB,△BDE∽△BAC,
∴FD:BC=AD:AB DE:AC=DB:AB,
而AD=12,BD=10,
∴BC=a,AC=a,
又∵AB2=BC2+AC2
即222=(a)2+( a)2,
解得a2=,
又∵S陰影部分=•AE•DE+•DF•BF
=×(-a)×a+×(a-a)×a
=×(a2+a2
=××
=60.
故答案為:60.
點評:此題考查了相似三角形的判定與性質:平行于三角形一邊的直線與三角形其它兩邊相交,所截得的三角形與原三角形相似.也考查了正方形的性質和勾股定理.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

精英家教網如圖,Rt△ADE、Rt△BDF和正方形EDFC組成一個大直角三角形ABC,若AD=12cm,BD=10cm,那么圖中陰影部分的面積是
 

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,Rt△ADE是由Rt△ABC繞點A順時針旋轉得到的,連接CE交斜邊AB于點F,CE 的延長線交BD于點G.
(1)試說明∠ACE=∠ABD;
(2)設∠ABC=α,∠CAE=β,試探索α、β 滿足什么關系時,△ACF與△GBF是全等三角形,并說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2013•黃埔區一模)如圖,Rt△ADE可由Rt△CAB旋轉而成,點B的對應點是E,點A的對應點是D,點B、C的坐標分別為(3,0),(1,4).
(1)寫出點E的坐標,并利用尺規作圖直接在圖中作出旋轉中心Q(保留作圖痕跡,不寫作法);
(2)求直線AE對應的函數關系式;
(3)將△ADE沿垂直于x軸的線段PT折疊,(點T在x軸上,點P在AE上,P與A、E不重合)如圖,使點A落在x軸上,點A的對應點為點F.設點T的坐標為(x,0),△PTF與△ADE重疊部分的面積為S.
①試求出S與x之間的函數關系式(包括自變量x的取值范圍);
②當x為何值時,S的面積最大?最大值是多少?
③是否存在這樣的點T,使得△PEF為直角三角形?若存在,直接寫出點T的坐標;若不存在,請說有理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,Rt△ADE≌ Rt△BEC, ∠A =∠B =90°,使A、E、B在  同一直線上,連結CD.

 (1)求證:∠1 =∠2 =45°

(2)若AD =3,AB =7,請求出△ECD的面積.

 (3)若P為CD的中點,連結PA、PB。試判斷△APB的形狀,并證明之。

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视