【題目】以下四個命題:①如果三角形一邊的中點到其他兩邊距離相等,那么這個三角形一定是等腰三角形:②兩條對角線互相垂直且相等的四邊形是正方形:③一組數據2,4,6.4的方差是2;④△OAB與△OCD是以O為位似中心的位似圖形,且位似比為1:4,已知∠OCD=90°,OC=CD.點A、C在第一象限.若點D坐標為(2 ,0),則點A坐標為(
,
),其中正確命題有(填正確命題的序號即可)
【答案】①③④
【解析】解:①如果三角形一邊的中點到其他兩邊距離相等,那么這個三角形一定是等腰三角形,故①正確; ②兩條對角線互相垂直且相等的四邊形是正方形或等腰梯形,故②錯誤;
③一組數據2,4,6.4的方差是2,故③正確;
④△OAB與△OCD是以O為位似中心的位似圖形,且位似比為1:4,已知∠OCD=90°,OC=CD.
點A、C在第一象限.若點D坐標為(2 ,0)得,C(
,
).
由位似比為1:4,得
點A坐標為( ,
),故④正確;
所以答案是:①③④.
【考點精析】根據題目的已知條件,利用命題與定理的相關知識可以得到問題的答案,需要掌握我們把題設、結論正好相反的兩個命題叫做互逆命題.如果把其中一個叫做原命題,那么另一個叫做它的逆命題;經過證明被確認正確的命題叫做定理.
科目:初中數學 來源: 題型:
【題目】如圖①所示,將一副三角尺的直角頂點重合在點O處.
(1)①∠AOD和∠BOC相等嗎?(不要求說明理由)
②∠AOC和∠BOD在數量上有何種關系?(不要求說明理由)
(2)若將這副三角尺按如圖②擺放,三角尺的直角頂點重合在點O處.
①∠AOD和∠BOC相等嗎?說明理由;
②∠AOC和∠BOD在數量上有何種關系?說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某商場籌集資金12.8萬元,一次性購進空調、彩電共30臺.根據市場需要,這些空調、彩電可以全部銷售,全部銷售后利潤不少于1.5萬元,其中空調、彩電的進價和售價見表格.
空調 | 彩電 | |
進價(元/臺) | 5400 | 3500 |
售價(元/臺) | 6100 | 3900 |
設商場計劃購進空調x臺,空調和彩電全部銷售后商場獲得的利潤為y元.
(1)試寫出y與x的函數關系式;
(2)商場有哪幾種進貨方案可供選擇?
(3)選擇哪種進貨方案,商場獲利最大?最大利潤是多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某服裝廠生產一種西裝和領帶,西裝每套定價元,領帶每條定價
元.廠方在開展促銷活動期間,可以同時向客戶提供兩種優惠方案:
買一套西裝送一條領帶;
西裝和領帶都按定價的
付款.現某客戶要到該服裝廠購買西裝
套,領帶
條
超過
.
若該客戶按方案
購買,需付款________元(用含
的式子表示);若該客戶按方案
購買,需付款________元(用含
的式子表示);
若
,通過計算說明此時按哪種方案購買較為合算?
當
時,你能給出一種更為省錢的購買方案嗎?試寫出你的購買方法,并計算出所需的錢數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖①,CA=CB,CD=CE,∠ACB=∠DCE=α,AD,BE相交于點M,連接CM.
(1)求證:BE=AD;
(2)用含α的式子表示∠AMB的度數;
(3)當α=90°時,取AD,BE的中點分別為點P,Q,連接CP,CQ,PQ,如圖②,判斷△CPQ的形狀,并加以證明.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,開口向下的拋物線y=ax2+bx+c交y軸于A點,交x軸于B、C兩點(點B在點C的左側).已知A點坐標為(0,﹣5),BC=4,拋物線過點(2,3).
(1)求此拋物線的解析式;
(2)記拋物線的頂點為M,求△ACM的面積;
(3)在拋物線上是否存在點P,使△ACP是以AC為直角邊的直角三角形?若存在,求出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖是某年6月份的日歷.
(1)細心觀察:小張一家外出旅游5天,這5天的日期之和是20.小張旅游最后一天是 _____________號.
(2)如果用一個長方形方框任意框出33個數,從左下角到右上角的“對角線”上的3個數字的和54,那么這9個數的和為______________,在這9個日期中,最后一天是_____________號.
(3)在這個月的日歷中,用方框能否圈出“總和為135”的9個數?如果能,請求出這9個日期分別是幾號;如果不能,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,我們把對角線互相垂直的四邊形叫做垂美四邊形.
(l)概念理解:如圖2,在四邊形ABCD中,AB=AD,CB=CD,問四邊形ABCD是垂美四邊形嗎?請說明理由.
(2)性質探宄:試探索垂美四邊形ABCD兩組對邊AB,CD與BC,AD之間的數量關系.
猜想結論:(要求用文字語言敘述)
寫出證明過程(先畫出圖形,寫出已知、求證)
(3)問題解決:如圖3,分別以Rt△ACB的直角邊AC和斜邊AB為邊向外作正方形ACFG和正方形ABDE,連接CE,BG,GE,已知AC=4,AB=5,求GE長.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com