【題目】科技改變著人們的生活,“高鐵出行”已成為人們的日常重要交通方式,如今,河南高鐵也在發生著日新月異的變化,2018年我省為連接A、B兩座城市之間的高鐵運行,某工程勘測隊在點E處測得城市A在北偏西16°方向上,城市B在北偏東60°方向上,該勘測隊沿正東方向行進了7.5km到達點F處,此時測得城市A在北偏西30°方向上,城市B在北偏東30°方向上
(1)請結合所學的知識判斷AB、AE的數量關系,并說明理由;
(2)求城市A和城市B之間的距離為多少公里?(結果精確到1km)(參考數據:≈1.73,cos74°≈0.28,tan74°≈3.49,sin76°≈0.97,cos76°≈0.24,sin16°≈0.28,cos16°≈0.96)
【答案】(1) AB=AE,理由見解析;(2)城市A和城市B之間距離約為27km.
【解析】
(1)根據題意設立參考點并建立坐標系,標出方向角,利用余角的性質找到相等的對應角,在由題意已得到對應邊,證明三角形全等.
(2)構造直角三角形,利用三角函數表示涉及計算的各邊,并利用等量關系建立方程并求解即可.
解:(1)AB=AE
理由如下:如圖
∵城市A在點E處北偏西16°方向上,城市B在點北偏東60°方向上.
∴∠AEH=90°﹣16°=74°,∠BEF=90°﹣60°=30°
又∵城市A在點F北偏西30°方向上,城市B在點F處北偏東30°方向上.
∴∠AFE=90°﹣30°=60°.∠BFN=90°﹣30°=60°
∴∠EBF=60°﹣30°=30°
∴EF=BF
又∵∠BFA=30°+30°=60°
在△AEF與△ABF中
∴△AEF≌△ABF(SAS)
∴AB=AE
(2)過A作AH⊥MN于點H.
設AE=x,則AH=xsin(90°﹣16°)=xsin74°,HE=xcos(90°﹣16°)=xcos74°
∴HF=xcos74°+7.5
∴在Rt△AHF中,AH=HFtan60°
∴xsin74°=(xcos74°+7.5)tan60°
即0.96x=(0.28x+7.5)×1.73
解得x≈27,即AB≈27
答:城市A和城市B之間距離約為27km.
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,頂點為M的拋物線是由拋物線y=x2﹣3向右平移一個單位后得到的,它與y軸負半軸交于點A,點B在該拋物線上,且橫坐標為3.
(1)求點M、A、B坐標;
(2)連結AB、AM、BM,求∠ABM的正切值;
(3)點P是頂點為M的拋物線上一點,且位于對稱軸的右側,設PO與x正半軸的夾角為α,當α=∠ABM時,求P點坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小明和小亮分別從甲地和乙地同時出發,沿同一條路相向而行,小明開始跑步,中途改為步行,到達乙地恰好用小亮騎自行車以
的速度直接到甲地,兩人離甲地的路程
與各自離開出發地的時間
之間的函數圖象如圖所示,
甲、乙兩地之間的路程為______m,小明步行的速度為______
;
求小亮離甲地的路程y關于x的函數表達式,并寫出自變量x的取值范圍;
求兩人相遇的時間.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在的正方形網格中,每個小正方形的邊長都為1,網格中有一個格點
(即三角形的頂點都在格點上).
(1)在圖中作出關于直線l對稱的
;(要求A與
,B與
,C與
相對應)
(2)作出繞點C順時針方向旋轉90°后得到的
;
(3)在(2)的條件下求出線段CB在旋轉中所掃過的面積.(結果保留π)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】△ABC中,∠BAC=90°,AB=AC,點D為直線BC上一動點(點D不與B,C重合),以AD為邊在AD右側作正方形ADEF,連接CF.
(1)觀察猜想
如圖1,當點D在線段BC上時,
①BC與CF的位置關系為: .
②BC,CD,CF之間的數量關系為: ;(將結論直接寫在橫線上)
(2)數學思考
如圖2,當點D在線段CB的延長線上時,結論①,②是否仍然成立?若成立,請給予證明;若不成立,請你寫出正確結論再給予證明.
(3)拓展延伸
如圖3,當點D在線段BC的延長線上時,延長BA交CF于點G,連接GE.若已知AB=2,CD=
BC,請求出GE的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,一次函數y=3x+2的圖象與y軸交于點A,與反比例函數y=(k≠0)在第一象限內的圖象交于點B,且點B的橫坐標為1.過點A作AC⊥y軸交反比例函數y=
(k≠0)的圖象于點C,連接BC.
(1)求反比例函數的表達式.
(2)求△ABC的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】圖1、圖2均為圓心角為90°的扇形、請按要求用無刻度的直尺完成下列作圖.
(1)在圖1中、點M是的中點、請作出線段AB的垂直平分線;
(2)在圖2中、點M是的中點,點N又是
的三等分點,請作出線段0B的垂直平分線.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點A、B在雙曲線y=的第一象限分支上,AO的延長線交第三象限的雙曲線于C,AB的延長線與x軸交于點D,連接CD與y軸交于點E,若AB=BD,S△ODE=
,則k=_____.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com