【題目】某大學生創業團隊抓住商機,購進一批干果分裝成營養搭配合理的小包裝后出售,每袋成本3元.試銷期間發現每天的銷售量y(袋)與銷售單價x(元)之間滿足一次函數關系,部分數據如表所示,其中3.5≤x≤5.5,另外每天還需支付其他費用80元.
(1)請直接寫出y與x之間的函數關系式;
(2)如果每天獲得160元的利潤,銷售單價為多少元?
(3)設每天的利潤為w元,當銷售單價定為多少元時,每天的利潤最大?最大利潤是多少元?
【答案】(1)y與x之間的函數關系式為y=﹣80x+560;(2)如果每天獲得160元的利潤,銷售單價為4元;(3)當銷售單價定為5元時,每天的利潤最大,最大利潤是240元.
【解析】(1)設y與x的函數關系式為y=kx+b,將x=3.5,y=280;x=5.5,y=120分別代入求出k、b的值即可得;
(2)根據利潤=(售價-成本)×銷售量-其他費用列出方程進行求解即可得;
(3)根據利潤=(售價-成本)×銷售量-其他費用列出函數關系式,然后利用二次函數的性質進行解答即可得.
(1)設y=kx+b,將x=3.5,y=280;x=5.5,y=120代入,
得,解得
,
則y與x之間的函數關系式為y=﹣80x+560;
(2)由題意,得(x﹣3)(﹣80x+560)﹣80=160,
整理,得x2﹣10x+24=0,解得x1=4,x2=6,
∵3.5≤x≤5.5,∴x=4,
答:如果每天獲得160元的利潤,銷售單價為4元;
(3)由題意得:w=(x﹣3)(﹣80x+560)﹣80
=﹣80x2+800x﹣1760
=﹣80(x﹣5)2+240,
∵3.5≤x≤5.5,∴當x=5時,w有最大值為240,
故當銷售單價定為5元時,每天的利潤最大,最大利潤是240元.
科目:初中數學 來源: 題型:
【題目】在□ABCD中,O是AC、BD的交點,過點O 與AC垂直的直線交邊AD于點E,若□ABCD的周長為22cm,則△CDE的周長為( ).
A. 8cm B. 10cm C. 11cm D. 12cm
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠B=30°,AD平分∠CAB.
(1)求∠CAD的度數;
(2)延長AC至E,使CE=AC,試說明DA=DE.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】問題背景:
在△ABC中,AB,BC,AC三邊的長度分別為,求這個三角形的面積。
小輝同學在解得這道題時,先建立一個正方形網格(每個小正方形的邊長為1),再在網格中畫出格點△ABC(即△ABC三個頂點都在小正方形的頂點處),如圖1所示.這樣不需求△ABC的高,而借用網格就能計算出它的面積.這種方法叫做構圖法.
(1)請你直接寫出△ABC的面積為:______;
思維拓展
(2)若△DEF三邊的長分別為a,2
a,
a(a>0),請利用圖2的正方形網格(每個小正方形的邊長為a)畫出相應的△ABC. 并利用構圖法求出它的面積;
探索創新:
(3)若在△ABC三邊的長分別為,
,
(m>0,n>0,且m≠n),試運用構圖法求出三角形的面積。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ACF≌△DBE,其中點A、B、C、D在一條直線上.
(1)若BE⊥AD,∠F=62°,求∠A的大小.
(2)若AD=9cm,BC=5cm,求AB的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知:∠MON=30°,點A1、A2、A3、…在射線ON上,點B1、B2、B3、…在射線OM上,△A1B1B2、△A2B2B3、△A3B3B4、…均為等邊三角形,若OB1=1,則△A8B8B9的邊長為_____
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知如圖,直線相交于點
.
(1)若∠AOC=35°,求的度數;
(2)若∠BOD:∠BOC=2:4,求的度數;
(3)在(2)的條件下,過點作
,求
的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某自行車廠一周計劃生產輛自行車,平均每天生產
輛,由于各種原因實際每天生產量與計劃相比有出入.下表是某一周的生產情況(超產為正,減產為負):
星期一 | 星期二 | 星期三 | 星期四 | 星期五 | 星期六 | 星期日 |
(1)根據記錄可知前三天共生產_________輛;
(2)產量最多的一天比產量最少的一天多生產__________輛;
(3)該廠實行周計劃工作制,每輛車元,超額完成任務,超過的部分再獎勵
元,完不成任務時,每少生產一輛扣
元,那么該廠工人這一周的工資總金額是多少?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com