【題目】如圖,將邊長為 cm的正方形ABCD沿直線l向右翻動(不滑動),當正方形連續翻動6次后,正方形的中心O經過的路線長是cm.(結果保留π)
【答案】3π
【解析】解:
∵正方形ABCD的邊長為 cm,∴正方形的對角線長是2cm,翻動一次中心經過的路線的半徑是以對角線的一半為半徑,圓心角是90度的。
則中心經過的路線長是: ×6=3πcm;
故答案是:3π.
【考點精析】掌握正方形的性質和弧長計算公式是解答本題的根本,需要知道正方形四個角都是直角,四條邊都相等;正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角;正方形的一條對角線把正方形分成兩個全等的等腰直角三角形;正方形的對角線與邊的夾角是45o;正方形的兩條對角線把這個正方形分成四個全等的等腰直角三角形;若設⊙O半徑為R,n°的圓心角所對的弧長為l,則l=nπr/180;注意:在應用弧長公式進行計算時,要注意公式中n的意義.n表示1°圓心角的倍數,它是不帶單位的.
科目:初中數學 來源: 題型:
【題目】如圖,點C為線段AD上一點,B為CD的中點,且AD=10cm,BD=4cm;
(1)圖中共有多少條線段?寫出這些線段;
(2)求AC的長;
(3)若點E在直線AD上,且AE=3cm,求BE的長;
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了解決小區停車難的問題,某小區準備新建50個停車位,已知新建1個地上停車位和1個地下停車位需0.5萬元,新建3個地上停車位和2個地下停車位需1.1萬元.
(1)該小區新建1個地上停車位和1個地下停車位各需多少萬元?
(2)根據實際情況,該小區新建地上停車位不多于33個,且預計投資金額不超過11萬元,共有幾種建造方式?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】農夫將蘋果樹種在正方形的果園內,為了保護蘋果樹不受風吹,他在蘋果樹的周圍種上針葉樹.在下圖里,你可以看到農夫所種植蘋果樹的列數(n)和蘋果樹數量及針葉樹數量的規律:當n為某一個數值時,蘋果樹數量會等于針葉樹數量,則n為( )
A. 6 B. 8 C. 12 D. 16
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,半徑為1cm,圓心角為90°的扇形OAB中,分別以OA、OB為直徑作半圓,則圖中陰影部分的面積為( )
A.πcm2
B. πcm2
C. cm2
D. cm2
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為促進我市經濟的快速發展,加快道路建設,某高速公路建設工程中需修隧道AB,如圖,在山外一點C測得BC距離為200m,∠CAB=54°,∠CBA=30°,求隧道AB的長.(參考數據:sin54°≈0.81,cos54°≈0.59,tan54°≈1.38, ≈1.73,精確到個位)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△OAC中,以O為圓心,OA為半徑作⊙O,作OB⊥OC交⊙O于B,垂足為O,連接AB交OC于點D,∠CAD=∠CDA.
(1)判斷AC與⊙O的位置關系,并證明你的結論;
(2)若OA=5,OD=1,求線段AC的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】加工一根軸,圖上標明的直徑加工要求是(單位:mm),則這種零件的標準尺寸是________mm,合格產品的最大直徑是________mm,最小直徑是________mm.如果加工成的軸的直徑是44.8毫米,它是________(填“合格”或“不合格”)產品.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某汽車專賣店銷售A,B兩種型號的新能源汽車.上周售出1輛A型車和3輛B型車,銷售額為96萬元;本周已售2輛A型車和1輛B型車,銷售額為62萬元.
(1)求每輛A型車和B型車的售價各多少萬元.
(2)甲公司擬向該店購買A,B兩種型號的新能源汽車共6輛,購車費不少于130萬元,且不超過140萬元. 則有哪幾種購車方案?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com