【題目】如圖,在平面直角坐標系xoy中,A(1,2),B(3,1),C(﹣2,﹣1).
(1)在圖中作出△ABC關于y軸的對稱圖形△A1B1C1.
(2)寫出點A1,B1,C1的坐標(直接寫答案).
【答案】(1)見解析;(2)A1(-1,2),B1(-3,1),C1(2,-1).
【解析】
(1)利用軸對稱性質,作出A、B、C關于y軸的對稱點A1、B1、C1,順次連接A1B1、B1C1、C1A1,即得到關于y軸對稱的△A1B1C1;(2)根據點關于y軸對稱的性質,縱坐標相同,橫坐標互為相反數,即可求出A1、B1、C1各點的坐標.
(1)作出A、B、C關于y軸的對稱點A1、B1、C1,順次連接A1B1、B1C1、C1A1,
所作圖形如下所示:
;
(2)∵A(1,2),B(3,1),C(﹣2,﹣1),
∴關于y軸對稱點A1,B1,C1的坐標分別為:A1(-1,2),B1(-3,1),C1(2,-1).
科目:初中數學 來源: 題型:
【題目】如圖,A,B是直線y=x+4與坐標軸的交點,直線y=-2x+b過點B,與x軸交于點C.
(1)求A,B,C三點的坐標;
(2)點D是折線A—B—C上一動點.
①當點D是AB的中點時,在x軸上找一點E,使ED+EB的和最小,用直尺和圓規畫出點E的位置(保留作圖痕跡,不要求寫作法和證明),并求E點的坐標.
②是否存在點D,使△ACD為直角三角形,若存在,直接寫出D點的坐標;若不存在,請說明理由
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖是由邊長為1的小正方形組成的網格,直線
是一條網格線,點
,
在格點上,
的三個頂點都在格點(網格線的交點)上.
(1)作出關于直線
對稱的
;
(2)在直線上畫出點
,使四邊形
的周長最。
(3)在這個網格中,到點
和點
的距離相等的格點有_________個.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在一個可以自由轉動的轉盤中,指針位置固定,三個扇形的面積都相等,且分別標有數字1,2,3.
(1)小明轉動轉盤一次,當轉盤停止轉動時,指針所指扇形中的數字是奇數的概率為________;
(2)小明先轉動轉盤一次,當轉盤停止轉動時,記錄下指針所指扇形中的數字;接著再轉動轉盤一次,當轉盤停止轉動時,再次記錄下指針所指扇形中的數字,求這兩個數字之和是3的倍數的概率(用畫樹狀圖或列表等方法求解)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知在Rt△ABC中,∠ACB=90°,AC > BC,CD是Rt△ABC的高,E是AC的中點,ED的延長線與CB的延長線相交于點F.
(1)求證:DF是BF和CF的比例中項;
(2)在AB上取一點G,如果AE·AC=AG·AD,求證:EG·CF=ED·DF.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知是等邊三角形,點
是直線
上一點,以
為一邊在
的右側作等邊
.
(1)如圖①,點在線段
上移動時,直接寫出
和
的大小關系;
(2)如圖②,點在線段
的延長線上移動時,猜想
的大小是否發生變化.若不變請求出其大;若變化,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,PA、PB是⊙O的切線,切點分別是A、B,直線EF也是⊙O的切線,切點為Q,交PA、PB于點E、F,已知PA=12cm,∠P=40°
(1)求△PEF的周長.
(2)求∠EOF的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在正方形ABCD中,AB=8,點P在邊CD上,tan∠PBC=,點Q是在射線BP上的一個動點,過點Q作AB的平行線交射線AD于點M,點R在射線AD上,使RQ始終與直線BP垂直.
(1)如圖1,當點R與點D重合時,求PQ的長;
(2)如圖2,試探索: 的比值是否隨點Q的運動而發生變化?若有變化,請說明你的理由;若沒有變化,請求出它的比值;
(3)如圖3,若點Q在線段BP上,設PQ=x,RM=y,求y關于x的函數關系式,并寫出它的定義域.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com