【題目】如圖(1),在平面直角坐標系中,點A、C分別在y軸和x軸上,AB∥x軸,cosB=.點P從B點出發,以1cm/s的速度沿邊BA勻速運動,點Q從點A出發,沿線段AO-OC-CB勻速運動.點P與點Q同時出發,其中一點到達終點,另一點也隨之停止運動.設點P運動的時間為t(s),△BPQ的面積為S(cm2), 已知S與t之間的函數關系如圖(2)中的曲線段OE、線段EF與曲線段FG.
(1)點Q的運動速度為 cm/s,點B的坐標為 ;
(2)求曲線FG段的函數解析式;
(3)當t為何值時,△BPQ的面積是四邊形OABC的面積的?
【答案】(1)4,(18,8);
(2)曲線FG段的函數解析式為:S=t2+12t;
(3)t=3或t=,△BPQ的面積是四邊形OABC的面積的
.
【解析】試題分析:(1)結合函數圖象得出當2秒時,BP=2,此時△BPQ的面積為8cm2,進而求出AO為8cm,即可得出Q點的速度,進而求出AB的長即可;(2)首先得出PB=t,BQ=30-4t,則QM=(30-4t)=24-
t,利用S△PBQ=
t(24-
t)求出即可;(3)首先得出△BPQ的面積,進而得出F點坐標,進而得出直線EF解析式為:S=4t,當S=12時,求出t的值,再將S=12代入S=-
t2+12t求出t的值,即可得出答案.
試題解析:(1)由題意可得出:當2秒時,△BPQ的面積的函數關系式改變,則Q在AO上運動2秒,
當2秒時,BP=2,此時△BPQ的面積為8cm2,
∴AO為8cm,
∴點Q的運動速度為:8÷2=4(cm/s),
當運動到5秒時,函數關系式改變,則CO=12cm,
∵cosB=,
∴可求出AB=6+12=18(cm),
∴B(18,8);
故答案為:4,(18,8);
(2)如圖(1):
PB=t,BQ=304t,
過點Q作QM⊥AB于點M,
則QM= (304t)=24
t,
∴S△PBQ=t(24
t)=
t2+12t(5t7.5),
即曲線FG段的函數解析式為:S= t2+12t;
(3)∵S梯形OABC= (12+18)×8=120,
∴×120=12,
當t>2時,F(5,20),
∴直線EF解析式為:S=4t,當S=12時,4t=12,解得:t=3,
將S=12代入S=t2+12t,
解得:t=,
∵5t7.5,故t=,
綜上所述:t=3或t=,△BPQ的面積是四邊形OABC的面積的
.
科目:初中數學 來源: 題型:
【題目】我們知道對于x軸上的任意兩點A(x1,0),B(x2,0),有AB=|x1﹣x2|,而對于平面直角坐標系中的任意兩點P1(x1,y1),P2(x2,y2),我們把|x1﹣x2|+|y1﹣y2|稱為Pl,P2兩點間的直角距離,記作d(P1,P2),即d(P1,P2)=|x1﹣x2|+|y1﹣y2|.
(1)已知O為坐標原點,若點P坐標為(1,3),則d(O,P)= ;
(2)已知O為坐標原點,動點P(x,y)滿足d(O,P)=2,請寫出x與y之間滿足的關系式,并在所給的直角坐標系中畫出所有符合條件的點P所組成的圖形;
(3)試求點M(2,3)到直線y=x+2的最小直角距離.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,O為坐標原點,點A的坐標為(-8,0),直線BC經過點B(-8,6),C(0,6),將四邊形OABC繞點O按順時針方向旋轉α度(0<α ≤180°)得到四邊形OA′B′C′,此時直線OA′、直線B′C′分別與直線BC相交于P、Q.在四邊形OABC旋轉過程中,若BP=BQ,則點P的坐標為__________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,在平面直角坐標系中,直線與
軸、
軸分別交于點
、
,點
為
軸負半軸上一點,
于點
交
軸于點
.已知拋物線
經過點
、
、
.
()求拋物線的函數式.
()連接
,點
在線段
上方的拋物線上,連接
、
,若
和
面積滿足
,求點
的坐標.
()如圖
,
為
中點,設
為線段
上一點(不含端點),連接
.一動點
從
出發,沿線段
以每秒
個單位的速度運動到
,再沿著線段
以每秒
個單位的速度運動到
后停止.若點
在整個運動過程中用時最少,請直接寫出最少時間和此時點
的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某地區為了鼓勵市民節約用水,計劃實行生活用水按階梯式水價計費,每月用水量不超過10噸(含10噸)時,每噸按基礎價收費;每月用水量超過10噸時,超過的部分每噸按調節價收費.例如,第一個月用水16噸,需交水費17.8元,第二個月用水20噸,需交水費23元.
(1)求每噸水的基礎價和調節價;
(2)設每月用水量為x噸,應交水費為y元,寫出y與x之間的函數關系式;
(3)若某月用水12噸,應交水費多少元?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com