【題目】如圖,在△ABC中,∠B=90°,AB=6cm,BC=12cm.點P從點A出發,沿AB邊向點B以1cm/s的速度移動;點Q從點B出發,沿BC邊向點C以2cm/s的速度移動,設P,Q同時出發,問:
(1)經過幾秒后,點P,Q之間距離最?最小距離是多少?
(2)經過幾秒后,△PBQ的面積最大?最大面積是多少?
科目:初中數學 來源: 題型:
【題目】如圖,在矩形ABCD中,已知 AD>AB.在邊AD上取點E,連結CE.過點E作EF⊥CE,與邊AB的延長線交于點F.
(1)證明:△AEF∽△DCE.
(2)若AB=3,AE =4,AD=10,求線段BF的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小林準備進行如下操作試驗:把一根長為的鐵絲剪成兩段,并把每一段各圍成一個正方形.
(1)要使這兩個正方形的面積之和等于,小林該怎么剪?
(2)小峰對小林說:“這兩個正方形的面積之和不可能等于.”他的說法對嗎?請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,⊙P的圓心是(2,a)(a >0),半徑是2,與y軸相切于點C,直線y=x被⊙P截得的弦AB的長為,則a的值是( )
A. B.
C.
D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB是半圓O的直徑,點D是半圓O上一點,點C是 的中點,CE⊥AB于點E,過點D的切線交EC的延長線于點G,連接AD,分別交CE、CB于點P、Q,連接AC.
(1)求證:GP=GD;
(2)求證:P是線段AQ的中點;
(3)連接CD,若CD=2,BC=4,求⊙O的半徑和CE的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=6cm,BC=12cm,點P從點A沿邊AB向點B以1cm/s的速度移動;同時,點Q從點B沿邊BC向點C以2cm/s的速度移動.問:
(1)幾秒時△PBQ的面積等于8cm2;
(2)幾秒時△PDQ的面積等于28cm2;
(3)幾秒時PQ⊥DQ.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在矩形ABCD中,BC=20 cm,P,Q,M,N分別從A,B,C,D出發,沿AD,BC,CB,DA方向在矩形的邊上同時運動,當有一個點先到達所在運動邊的另一個端點時,運動即停止.已知在相同時間內,若BQ=x cm(x≠0),則AP=2x cm,CM=3x cm,DN=x2 cm,
(1)當x為何值時,點P,N重合;
(2)當x為何值是,以P,Q,M,N為頂點的四邊形是平行四邊形.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀下列材料,回答問題:
如圖,
點A(x1,y1),點B(x2,y2),以AB為斜邊作Rt△ABC,則C(x2,y1),于是,
,所以
,反之,可將代數式
的值看作點(x1,y1)到點(x2,y2)的距離.
例如:
故代數式的值看作點(x,y)到點(1,-1)的距離.
已知:代數式
(1)該代數式的值可看作點(x,y)到點 、 的距離之和.
(2)求出這個代數式的最小值,
(3)在(2)的條件下求出此時y與x之間的函數關系式并寫出x的值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com