【題目】已知拋物線經過點
,點
,與x軸交于另一點C,頂點為D,連接
.
(1)求該拋物線的解析式;
(2)點P為該拋物線上一動點(與點B,C不重合),設點P的橫坐標為t,
①當點P在直線的下方運動時,求
面積的最大值;
②該拋物線上是否存在點P,使得?若存在,請直接寫出點P的坐標若不存在,請說明理由.
【答案】(1);(2)①當
時,
的面積取得最大值,最大值為
;②存在.滿足條件的點P坐標為
和
【解析】
(1)將點,點
代入拋物線
中求出a,b即可;
(2)①過點P作軸于點E,交直線
于點F,先求出直線BC的解析式,進而設P的坐標為
,F的坐標為
,從而求出
的面積表達式即可求得最值;②分兩種情況進行討論,當點P在直線BC的上方時,當
時,則
和當點P在直線BC的下方時,設直線PB與CD交于點M,若
,則
,進而即可求得點P的坐標.
解:(1)∵拋物線經過點
,點
∴
解得
∴拋物線的解析式為;
(2)①如圖①,過點P作軸于點E,交直線
于點F
在拋物線中,令
則,解得
,
∴點C的坐標為
由點和點
可求得直線
的解析式為
設點P的坐標為,由題意可知
則點F的坐標為
∴
∴
∵
∴當時,
的面積取得最大值,最大值為
;
②存在.滿足條件的點P坐標為和
∵
∴拋物線的頂點D的坐標為
由點和點
可求得直線
的解析式為
如圖②,當點P在直線的上方時,當
時,則
設直線的解析式為
,把點
的坐標代入
,得
∴直線的解析式為
由,解得
,
(舍去)
當時,
∴點P坐標為;
如圖③,當點P在直線的下方時
設直線與
交于點M,若
,則
過點B作軸于點N,則點
∴
∴垂直平分線段
設直線與
交于點G,則線段
的中點G為
.由點
和點
可求得解析式為
∵直線,與直線
交
∴由,解得
∴點M的坐標為
由點和點
可求得直線
的解析式為
∴由,解得
,
(舍去)
∴點P坐標為;
∴綜上所述,滿足條件的點P坐標為和
.
科目:初中數學 來源: 題型:
【題目】某校開展了“創建文明校園”活動周,活動周設置了“A:文明禮儀,B:生態環境,C:交通安全,D:衛生保潔”四個主題,每個學生選一個主題參與.為了解活動開展情況,學校隨機抽取了部分學生進行調查,并根據調查結果繪制了如下條形統計圖和扇形統計圖.
(1)本次隨機調查的學生人數是 人;
(2)請你補全條形統計圖;
(3)在扇形統計圖中,“A”所在扇形的圓心角等于 度;
(4)小明和小華各自隨機參加其中的一個主題活動,請用畫樹狀圖或列表的方式,求他們恰好同時選中“文明禮儀”或“生態環境”主題的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,四邊形ABCD是平行四邊形,//
,且分別交對角線AC于點E,F,連接BE,DF.
(1)求證:AE=CF;
(2)若BE=DE,求證:四邊形EBFD為菱形.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】問題背景:
(1)如圖1,在△ABC和△CDE中,AB=AC,EC=ED,∠BAC=∠CED,請在圖中作出與△BCD相似的三角形.
遷移應用:
(2)如圖2,E為正方形ABCD內一點,∠DEB=135°,在DE上取一點G,使得BE=EG,延長BE交AG于點F,求AF:FG的值.
聯系拓展:
(3)矩形ABCD中,AB=6,AD=8,P、E分別是AC、BC上的點,且四邊形PEFD為矩形,若△PCD是等腰三角形時,直接寫出CF的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在抗擊新型冠狀病毒疫情期間,某校學生主動發起為武漢加油捐款活動,為了了解學生捐款金額(單位:元),隨機調查了該校的部分學生,根據調查結果,繪制出如下的統計圖①和圖②.請根據相關信息,解答下列問題:
(Ⅰ)本次接受調查的學生人數為_________,圖①中m的值為_________;
(Ⅱ)求統計的這組學生捐款數據的平均數、眾數和中位數;
(Ⅲ)根據統計的這組學生捐款數據的樣本數據,若該校共有1800名學生,估計該校此次捐款總金額為多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了解某中學學生課余活動情況,對喜愛看課外書、體育活動、看電視、社會實踐四個方面的人數進行調查統計,現從該校隨機抽取名學生作為樣本,采用問卷調查的方式收集數據(參與問卷調查的每名學生只能選擇其中--項),并據調查得到的數據繪制成了如圖所示的兩幅不完整的統計圖,由圖中提供的信息,解答下列問題:
(1) ,直接補全條形統計圖;
(2)若該校共有學生名,試估計該校喜愛看課外書的學生人數;
(3)若被調查喜愛體育活動的名學生中有
名男生和
名女生,現從這
名學生中任意抽取
名,請用列表或畫樹狀圖的方法求恰好抽到
名男生的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在每個小正方形的邊長為1的網格中,A,B,D,E為格點,C為,
的延長線的交點.
(Ⅰ)的結果為_________________.
(Ⅱ)若點R在線段上,點S在線段
上,點T在線段
上,且滿足四邊形
為菱形,請在如圖所示的網格中,用無刻度的直尺,畫出菱形
,并簡要說明點R,S,T的位置是如何找到的(不要求證明)____________________.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com