精英家教網 > 初中數學 > 題目詳情

【題目】如圖,已知AB是⊙O的直徑,CD與⊙O相切于C,BE∥CO.
(1)求證:BC是∠ABE的平分線;
(2)若DC=8,⊙O的半徑OA=6,求CE的長.

【答案】
(1)證明:∵DE是切線,

∴OC⊥DE,

∵BE∥CO,

∴∠OCB=∠CBE,

∵OC=OB,

∴∠OCB=∠OBC,

∴∠CBE=∠CBO,

∴BC平分∠ABE.


(2)在Rt△CDO中,∵DC=8,OC=0A=6,

∴OD= =10,

∵OC∥BE,

= ,

= ,

∴EC=4.8.


【解析】(1)由BE∥CO,推出∠OCB=∠CBE,由OC=OB,推出∠OCB=∠OBC,可得∠CBE=∠CBO;(2)在Rt△CDO中,求出OD,由OC∥BE,可得 = ,由此即可解決問題;
【考點精析】解答此題的關鍵在于理解切線的性質定理的相關知識,掌握切線的性質:1、經過切點垂直于這條半徑的直線是圓的切線2、經過切點垂直于切線的直線必經過圓心3、圓的切線垂直于經過切點的半徑.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠BAC=30°,以直角邊AB為直徑作半圓交AC于點D,以AD為邊作等邊△ADE,延長ED交BC于點F,BC=2 ,則圖中陰影部分的面積為 . (結果不取近似值)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】工人師傅用一塊長為10dm,寬為6dm的矩形鐵皮制作一個無蓋的長方體容器,需要將四角各裁掉一個正方形.(厚度不計)
(1)在圖中畫出裁剪示意圖,用實線表示裁剪線,虛線表示折痕;并求長方體底面面積為12dm2時,裁掉的正方形邊長多大?
(2)若要求制作的長方體的底面長不大于底面寬的五倍,并將容器進行防銹處理,側面每平方分米的費用為0.5元,底面每平方分米的費用為2元,裁掉的正方形邊長多大時,總費用最低,最低為多少?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】烏江快鐵大橋是快鐵渝黔線的一項重要工程,由主橋AB和引橋BC兩部分組成(如圖所示),建造前工程師用以下方式做了測量;無人機在A處正上方97m處的P點,測得B處的俯角為30°(當時C處被小山體阻擋無法觀測),無人機飛行到B處正上方的D處時能看到C處,此時測得C處俯角為80°36′.
(長度均精確到1m,參考數據: ≈1.73,sin80°36′≈0.987,cos80°36′≈0.163,tan80°36′≈6.06)

(1)求主橋AB的長度;
(2)若兩觀察點P、D的連線與水平方向的夾角為30°,求引橋BC的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知Rt△ABE中∠A=90°,∠B=60°,BE=10,D是線段AE上的一動點,過D作CD交BE于C,并使得∠CDE=30°,則CD長度的取值范圍是

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,∠AOB的一邊OA為平面鏡,∠AOB=38°,在OB上有一點E , 從E點射出一束光線經OA上一點D反射,反射光線DC恰好與OB平行,則∠DEB的度數是( )

A.76°
B.52°
C.45°
D.38°

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】嘉興教育學院大學生小王利用暑假開展了30天的社會實踐活動,參與了嘉興浙北超市的經營,了解到某成本為15元/件的商品在x天銷售的相關信息,如表表示:

銷售量p(件)

P=45﹣x

銷售單價q(元/件)

當1≤x≤18時,q=20+x
當18<x≤30時,q=38

設該超市在第x天銷售這種商品獲得的利潤為y元.
(1)求y關于x的函數關系式;
(2)在這30天中,該超市銷售這種商品第幾天的利潤最大?最大利潤是多少?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知P是拋物線y2=4x上的動點,Q在圓C:(x+3)2+(y﹣3)2=1上,R是P在y軸上的射影,則|PQ|+|PR|的最小值是

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】設F為拋物線y2=4x的焦點,A,B,C為該拋物線上不同的三點, + + = ,O為坐標原點,且△OFA、△OFB、△OFC的面積分別為S1、S2、S3 , 則S12+S22+S32=(
A.2
B.3
C.6
D.9

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视