【題目】如圖所示,△ABC中,∠B=90°,AB=6cm,BC=8cm.點P從點A開始沿AB邊向B以1cm/s的速度移動,點Q從B點開始沿BC邊向點C以2cm/s的速度移動.如果P,Q分別從A,B同時出發,
(1)如果P、Q同時出發,幾秒后,可使△PBQ的面積為8平方厘米?
(2)線段PQ能否將△ABC分成面積相等的兩部分?若能,求出運動時間;若不能說明理由.
【答案】(1)2秒或4秒;(2)線段PQ不能否將△ABC分成面積相等的兩部分.
【解析】試題分析:(1)設出運動所求的時間,可將BP和BQ的長表示出來,代入三角形面積公式,列出等式,可將時間求出;
(2)將△PBQ的面積表示出來,根據△=b2-4ac來判斷.
試題解析:(1)設經過x秒,使△PBQ的面積等于8cm2,依題意有:
(6-x)2x=8,
解得x1=2,x2=4,
經檢驗,x1,x2均符合題意,
故經過2秒或4秒,△PBQ的面積等于8cm2;
(2)不能,理由如下:
設經過y秒,線段PQ能將△ABC分成面積相等的兩部分,依題意有:
S△ABC =×6×8=24,
(6﹣y)2y=12,
y2﹣6y+12=0,
∵△=b2﹣4ac=36﹣4×12=﹣12<0,
∴此方程無實數根,
∴線段PQ不能否將△ABC分成面積相等的兩部分.
科目:初中數學 來源: 題型:
【題目】如圖,△ABC在直角坐標系中,
(1)請寫出各點的坐標;
(2)若把△ABC向上平移2個單位,再向左平移1個單位得到,在圖中畫出三角形ABC變化后的位置,寫出A′、B′、C′的坐標;
(3)求出△ABC的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖①,M是鐵絲AD的中點,將該鐵絲首尾相接折成△ABC(如圖②),且∠B=30°,∠C=100°,則下列說法正確的是( )
A. 點M在AB上B. 點M在BC上,且距點B較近,距點C較遠
C. 點M在BC的中點處D. 點M在BC上,且距點C較近,距點B較遠
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知關于x的一元二次方程x2﹣2mx+(m﹣1)2=0有兩個實數根x1,x2.
(1)求m的取值范圍;
(2)當x12+x22=28時,求m的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,AD是△ABC的平分線,DE⊥AB,DF⊥AC,垂足分別是E,F.則下面結論中①DA平分∠EDF;②AE=AF,DE=DF;③AD上的點到B、C兩點距離相等;④圖中共有3對全等三角形,正確的有:________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,已知平行四邊形ABCD頂點A的坐標為(2,6),點B在y軸上,且AD∥BC∥x軸,過B,C,D三點的拋物線y=ax2+bx+c(a≠0)的頂點坐標為(2,2),點F(m,6)是線段AD上一動點,直線OF交BC于點E.
(1)求拋物線的表達式;
(2)設四邊形ABEF的面積為S,請求出S與m的函數關系式,并寫出自變量m的取值范圍;
(3)如圖2,過點F作FM⊥x軸,垂足為M,交直線AC于P,過點P作PN⊥y軸,垂足為N,連接MN,直線AC分別交x軸,y軸于點H,G,試求線段MN的最小值,并直接寫出此時m的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】正方形網格中,小格的頂點叫做格點。小華按下列要求作圖:①在正方形網格的三條不同的實線上各取一個格點,使其中任意兩點不在同一條實線上;②連結三個格點,使之構成直角三角形。小華在左邊的正方形網格中作出了Rt⊿ABC。請你按照同樣的要求,在右邊的兩個正方形網格中各畫出一個直角三角形,并使三個網格中的直角三角形互不全等。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖.在等邊△ABC中,∠ABC與∠ACB的平分線相交于點O,且OD∥AB,OE∥AC.
(1)試判定△ODE的形狀,并說明你的理由;
(2)線段BD、DE、EC三者有什么關系?寫出你的判斷過程.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com