【題目】如圖1,已知平行四邊形ABCD頂點A的坐標為(2,6),點B在y軸上,且AD∥BC∥x軸,過B,C,D三點的拋物線y=ax2+bx+c(a≠0)的頂點坐標為(2,2),點F(m,6)是線段AD上一動點,直線OF交BC于點E.
(1)求拋物線的表達式;
(2)設四邊形ABEF的面積為S,請求出S與m的函數關系式,并寫出自變量m的取值范圍;
(3)如圖2,過點F作FM⊥x軸,垂足為M,交直線AC于P,過點P作PN⊥y軸,垂足為N,連接MN,直線AC分別交x軸,y軸于點H,G,試求線段MN的最小值,并直接寫出此時m的值.
【答案】(1)拋物線解析式為y=x2﹣x+3;(2)S=
m﹣3(2<m≤6);(3)當m=
時,MN最小=
.
【解析】試題分析:(1)根據平行四邊形的性質和拋物線的特點確定出點D,然而用待定系數法確定出拋物線的解析式.(2)根據AD∥BC∥x軸,且AD,BC間的距離為3,BC,x軸的距離也為3,F(m,6),確定出E(,3),從而求出梯形的面積.(3)先求出直線AC解析式,然后根據FM⊥x軸,表示出點P(m,﹣
m+9),最后根據勾股定理求出MN=
,從而確定出MN最大值和m的值.
試題解析:(1)∵過B,C,D三點的拋物線y=ax2+bx+c(a≠0)的頂點坐標為(2,2),
∴點C的橫坐標為4,BC=4,
∵四邊形ABCD為平行四邊形,
∴AD=BC=4,
∵A(2,6),
∴D(6,6),
設拋物線解析式為y=a(x﹣2)2+2,
∵點D在此拋物線上,
∴6=a(6﹣2)2+2,
∴a=,
∴拋物線解析式為y=(x﹣2)2+2=
x2﹣x+3,
(2)∵AD∥BC∥x軸,且AD,BC間的距離為3,BC,x軸的距離也為3,F(m,6)
∴E(,3),
∴BE=,
∴S=(AF+BE)×3=
(m﹣2+
)×3=
m﹣3
∵點F(m,6)是線段AD上,
∴2≤m≤6,
即:S=m﹣3(2≤m≤6).
(3)∵拋物線解析式為y=x2﹣x+3,
∴B(0,3),C(4,3),
∵A(2,6),
∴直線AC解析式為y=﹣x+9,
∵FM⊥x軸,垂足為M,交直線AC于P
∴P(m,﹣m+9),(2≤m≤6)
∴PN=m,PM=﹣m+9,
∵FM⊥x軸,垂足為M,交直線AC于P,過點P作PN⊥y軸,
∴∠MPN=90°,
∴MN==
=
∵2≤m≤6,
∴當m=時,MN最小=
=
.
科目:初中數學 來源: 題型:
【題目】已知AB∥CD,點M、N分別是AB、CD上兩點,點G在AB、CD之間,連接MG、NG.
(1)如圖1,若GM⊥GN,求∠AMG+∠CNG的度數;
(2)如圖2,若點P是CD下方一點,MG平分∠BMP,ND平分∠GNP,已知∠BMG=30°,求∠MGN+∠MPN的度數;
(3)如圖3,若點E是AB上方一點,連接EM、EN,且GM的延長線MF平分∠AME,NE平分∠CNG,2∠MEN+∠MGN=105°,求∠AME的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,某飛機于空中探測某座山的高度,在點A處飛機的飛行高度是AF=3700米,從飛機上觀測山頂目標C的俯角是45°,飛機繼續以相同的高度飛行300米到B處,此時觀測目標C的俯角是50°,求這座山的高度CD.(參考數據:sin50°≈0.77,cos50°≈0.64,tan50°≈1.20).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,△ABC中,∠B=90°,AB=6cm,BC=8cm.點P從點A開始沿AB邊向B以1cm/s的速度移動,點Q從B點開始沿BC邊向點C以2cm/s的速度移動.如果P,Q分別從A,B同時出發,
(1)如果P、Q同時出發,幾秒后,可使△PBQ的面積為8平方厘米?
(2)線段PQ能否將△ABC分成面積相等的兩部分?若能,求出運動時間;若不能說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】光明中學七年級1班同學積極響應“陽光體育工程”的號召,利用課外活動時間積極參加體育鍛煉,每位同學從長跑、籃球、鉛球、立定跳遠中選一項進行訓練,訓練前后都進行了測試.現將項目選擇情況及訓練后籃球定時定點投籃測試成績整理后作出如下統計圖表.
項目選擇情況統計圖訓練后籃球定時定點投籃測試進球數統計表
進球數(個) | 8 | 7 | 6 | 5 | 4 | 3 |
人數 | 2 | 1 | 4 | 7 | 8 | 2 |
請你根據圖表中的信息回答下列問題:
(1)選擇長跑訓練的人數占全班人數的百分比是_____%,該班共有同學_____人;
(2)求訓練后籃球定時定點投籃人均進球數;
(3)根據測試資料,訓練后籃球定時定點投籃的人均進球數比訓練之前人均進球數增加25%.請求出參加訓練之前的人均進球數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了測量一個圓鐵環的半徑,某同學用了如下方法,將鐵環平放在水平桌面上,用有一個角為30°的直角三角板和刻度尺按如圖所示的方法得到相關數據,進而求出鐵環半徑,若測得PA=5cm,則鐵環的半徑是_____cm.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,平面直角坐標系中,四邊形OABC為矩形,點A、B的坐標分別為(6,0),(6,8).動點M、N分別從O、B同時出發,以每秒1個單位的速度運動.其中,點M沿OA向終點A運動,點N沿BC向終點C運動.過點N作NP⊥BC,交AC于P,連接MP.已知動點運動了x秒.
(1)P點的坐標為多少;(用含x的代數式表示)
(2)試求△MPA面積的最大值,并求此時x的值;
(3)請你探索:當x為何值時,△MPA是一個等腰三角形?你發現了幾種情況?寫出你的研究成果.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,將△ABC繞點A順時針旋轉60°得到△ADE,點C的對應點E恰好落在BA的延長線上,DE與BC交于點F,連接BD.下列結論不一定正確的是( 。
A. AD=BD B. AC∥BD C. DF=EF D. ∠CBD=∠E
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ACD中,∠ACD=60°,以AC為邊作等腰三角形ABC,AB=AC,E、F分別為邊CD、BC上的點,連結AE、AF、EF,∠BAC=∠EAF=60°
(1)求證:△ABF≌△ACE;
(2)若∠AED=70°,求∠EFC的度數;
(3)請直接指出:當F點在BC何處時,AC⊥EF?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com