精英家教網 > 初中數學 > 題目詳情

【題目】在正方形網格中以點A為圓心,AB為半徑作圓A交網格于點C(如圖(1)),過點C作圓的切線交網格于點D,以點A為圓心,AD為半徑作圓交網格于點E(如圖(2)).

問題:

(1)求∠ABC的度數;

(2)求證:△AEB≌△ADC;

(3)△AEB可以看作是由△ADC經過怎樣的變換得到的?并判斷△AED的形狀(不用說明理由).

(4)如圖(3),已知直線a,b,c,且a∥b,b∥c,在圖中用直尺、三角板、圓規畫等邊三角形A′B′C′使三個頂點A′,B′,C′,分別在直線a,b,c上.要求寫出簡要的畫圖過程,不需要說明理由.

【答案】(1)∠ABC=60°;

(2)證明見解析;

(3)△AEB可以看作是由△ADC繞點A順時針旋轉60°得到的,△AED是等邊三角形;

(4)作圖及畫圖過程見解析.

【解析】試題分析:

(1)連接BC,通過證明△ABC是等邊三角形,即可求出∠ABC的度數;
(2)在Rt△AEBRt△ADC中,通過HL證明△AEB≌△ADC;
(3)由旋轉的性質即可得出△AED是等邊三角形;
(4)利用HL定理可證△A′N′C′≌△A′M′B′,得∠C′A′N′=∠B′A′M′,于是∠B′A′C′=∠M′A′N′=60°,由A′B′=A′C′得△A′B′C′為等邊三角形.

試題解析:

(1)連接BC,如圖所示:

由網格可知點CAB的中垂線上,
∴AC=BC,
∵AB=AC,∴AB=BC=AC,即△ABC是等邊三角形.
∴∠ABC=60°;

(2)如圖所示:

∵CD切⊙A于點C,
∴∠ACD=90°∠ABE=∠ACD=90°,
Rt△AEBRt△ADC中,
∵AB=AC,AE=AD.
∴Rt△AEB≌Rt△ADC(HL);
(3)△AEB可以看作是由△ADC繞點A順時針旋轉60°得到的.△AED是等邊三角形;
(4)①在直線a上任取一點,記為點A′,作A′M′⊥b,垂足為點M′;②作線段A′M′的垂直平分線,此直線記為直線d;③以點A′為圓心,A′M′長為半徑畫圓,與直線d交于點N′;④過點N′作N′C′⊥A′N′交直線c于點C′,連接A′C′;⑤以點A′為圓心,A′C′長為半徑畫圓,此圓交直線b于點B′;⑥連接A′B′、B′C′,則△A′B′C′為所求等邊三角形.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,小明的父親在相距米的兩棵樹間拴了一根繩子,給他做了一個簡易的秋千,拴繩子的地方距地面高都是米,繩子自然下垂呈拋物線狀,身高米的小明距較近的那棵樹米時,頭部剛好接觸到繩子,則繩子的最低點距地面的距離為( )米.

A. B. C. D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在矩形ABCD中,AB4BC5,點E是邊CD的中點,將△ADE沿AE折疊后得到△AFE.延長AF交邊BC于點G,則CG_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某城區近幾年通過拆遷舊房,植草,栽樹,修建公園等措施,使城區綠地面積不斷增加。

(1)根據圖中所提供的信息,回答下列問題:2008年綠地面積為 公頃。

2006、2007、2008年這三年中,綠地面積增加最多的是 年。

(2)為了滿足城市發展的需要,計劃到2010年使綠地總面積達到72.6公頃,試求這兩年(2008——2010)綠地面積的年平均增長率。

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某水果批發市場,草莓的批發價格是每箱元,蘋果的批發價格是每箱.

(1)若李心批發草莓,蘋果共,剛好花費元,則他購買草莓、蘋果各多少箱.

(2)李心有甲,乙兩個店鋪,每個店鋪在同一時間段內都能售出草莓,蘋果兩種水果合計箱,并且每售出一箱草莓和蘋果,甲店鋪獲毛利潤分別為元和元,乙店鋪獲毛利潤分別為元和.現在,李心要將批發購進的箱草莓,箱蘋果分配給每個店鋪各.設分配給甲店草莓.

①根據信息填表:

草莓數量(箱)

蘋果數量(箱)

合計(箱)

甲店

乙店

②設李心獲取的總毛利潤為元,

(1)的函數關系式:

(2)若在保證乙店鋪獲得毛利潤不少于元的前提下,應怎樣分配水果,使總毛利潤最大,最大的總毛利潤是多少元.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知ABC在平面直角坐標系中的位置如圖所示.

1)畫出ABC關于y軸對稱的AB1C1, 并寫出B1的坐標;

2)將ABC向右平移8個單位, 畫出平移后的A2B2C2, 寫出B2的坐標;

3)認真觀察所作的圖形, AB1C1A2B2C2有怎樣的位置關系.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,ABC中,D、EAB上,且D、E分別是AC、BC的垂直平分線上一點.

(1)若CDE的周長為4,求AB的長;

(2)若∠ACB=100°,求∠DCE的度數;

(3)若∠ACB=a(90°<a<180°),則∠DCE=___________.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某商店將進價為8元的商品按每件10元售出,每天可售出200件,現在采取提高商品售價減少銷售量的辦法增加利潤,如果這種商品每件的銷售價每提高0.5元其銷售量就減少10件,問應將每件售價定為多少元時,才能使每天利潤為640元?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】紅星中學為了解七年級學生課堂發言情況,隨機抽取該年級部分學生,對他們某天在課堂上發言的次數進行了統計,其結果如表,并繪制了如圖所示的兩幅不完整的統計圖,已知兩組發言人數的比為,請結合圖中相關數據回答下列問題:

求出樣本容量,并補全直方圖;

該年級共有學生人,請估計全年級在這天里發言次數不少于次的人數;

已知組發言的學生中恰有位女生,組發言的學生中恰有位男生,現從組與組中分別抽一位學生寫報告,請用列表法或畫樹狀圖的方法,求所抽的兩位學生恰好是一男一女的概率.

發言次數

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视