精英家教網 > 初中數學 > 題目詳情

【題目】如圖1ABC是邊長為4cm的等邊三角形,邊AB在射線OM上,且OA=6cm,點D從點O出發,沿OM的方向以1cm/s的速度運動,當D不與點A重合時,將ACD繞點C逆時針方向旋轉60°得到BCE,連接DE

1)求證:CDE是等邊三角形(下列圖形中任選其一進行證明);

2)如圖2,當點D在射線OM上運動時,是否存在以DE,B為頂點的三角形是直角三角形?若存在,求出運動時間t的值;若不存在,請說明理由.

【答案】(1)見解析;(2) 存在,當t=214s時,以D、EB為頂點的三角形是直角三角形.

【解析】

1)由旋轉的性質可得CD=CE,∠DCA=ECB,由等邊三角形的判定可得結論;

2)分四種情況,由旋轉的性質和直角三角形的性質可求解.

(1)證明:∵將△ACD繞點C逆時針方向旋轉60°得到△BCE,

∴∠DCE=60°DC=EC,

∴△CDE是等邊三角形;

(2)解:存在,

①當0t6s時,由旋轉可知,,

,由(1)可知,△CDE是等邊三角形,

,

,

,

,

OD=OADA=64=2,

t=2÷1=2s;

②當6t10s時,由∠DBE=120°90°,

∴此時不存在;

t = 10s時,點D與點B重合,

∴此時不存在;

t10s時,由旋轉的性質可知, CBE=60°

又由(1)知∠CDE=60°,

∴∠BDE=CDE+BDC=60°+BDC,

而∠BDC

∴∠BDE60°,

∴只能∠BDE=90°

從而∠BCD=30°,

BD=BC=4cm,

OD=14cm

t=14÷1=14s;

綜上所述:當t=214s時,以D、EB為頂點的三角形是直角三角形.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC中,EAC邊上的一點,且AE=AB,∠BAC=2∠CBE,以AB為直徑作⊙OAC于點D,交BE于點F

1)求證:BC⊙O的切線;

2)若AB=8,BC=6,求DE的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在△CBD中,CDBDCDBD,BE平分∠CBACD于點FCEBE垂足是E,CE的延長線與BD交于點A

1)求證:BFAC

2)求證:BEAC的中垂線;

3)若BD2,求DF的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知,ABC中,∠ACB90°ACBC,以AC為邊在同一平面內作等邊ACD,連接BD,則∠ADB______________

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,ADBCD,BEACF,BEADFBFAC,

1)求證:FDCD

2)連DE,求證:ED平分∠BEC

3)在(2)條件下,點PAC上,連BP、DPBPADQ, BP平分∠EBC,∠BPDBFD,APQ的面積為4,求線段PD的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】墊球是排球隊常規訓練的重要項目之一,下列圖表中的數據是運動員甲、乙、丙三人每人10次墊球測試的成績,測試規則為每次連續接球10個,每墊球到位1個記1分,已知運動員甲測試成績的中位數和眾數都是7

運動員甲測試成績統計表

測試序號

1

2

3

4

5

6

7

8

9

10

成績(分)

7

6

8

7

6

8

6

8

1)填空:____________

2)要從他們三人中選擇一位墊球較為穩定的接球能手,你認為選誰更合適?為什么?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,點E為正方形ABCD的邊AB上一點,EFEC,且EF=EC,連接AF.過點FFN垂直于BA的延長線于點N

1)求∠EAF的度數;

2)如圖2,連接FCBDM,交ADN.猜想BD,AF,DM三條線段的等量關系,并證明.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在直角梯形ABCD中,ADBC,B=90度,AC將梯形分成兩個三角形,其中ACD是周長為18cm的等邊三角形,則該梯形的中位線的長是(  )

A. 9cm B. 12cm C. cm D. 18cm

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在平行四邊形ABCD中,EAD上一點,AE=AB,過點E作直線EF,在EF上取一點G,使得∠EGB=EAB,連接AG

1)如圖①,當EFAB相交時,若∠EAB=60°,求證:EG=AG+BG;

2)如圖②,當EFCD相交時,且∠EAB=90°,請你寫出線段EG、AG、BG之間的數量關系,并證明你的結論.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视