【題目】(1)如圖(a)所示,點是正方形
內的一點,把
繞點
順時針方向旋轉,使點
與點
重合,點
的對應點是
.若
,
,
,求
的度數.
(2)如圖(b)所示,點是等邊三角形
內的一點,若
,
,
,求
的度數.
【答案】(1)135°;(2)150°
【解析】
(1)根據題意得出△ABP繞點B順時針方向旋轉了90°,才使點A與C重合,進而得出∠PBQ=90°,再利用勾股定理逆定理得出∠PQC的度數,進而求出∠BQC的度數;
(2)由題意可得出:△ABP繞點B順時針方向旋轉60°,才使點A與C重合,進而得出∠PP'C=90°,即可得出∠BPA的度數.
(1)如圖(a)所示,連接.
由旋轉可知:,
.
又∵四邊形是正方形,
∴繞點
順時針方向旋轉了90°,才使點
與
重合.
即,
∴是等腰直角三角形.
∴,
.
在中,
,
,
,
∴,
∴.
故.
(2)如圖(b)所示,作,且
,連接
,
∴是等邊三角形.∴
,
.
∵是等邊三角形,
∴,
,
∴∠ABP+∠PBC=∠PBC+∠CBP',
∴.∴
.
∴,
.
在中,
,
,
,
∴,
∴.
故.
科目:初中數學 來源: 題型:
【題目】下列一元二次方程中,兩實根之和為1的是 ( )
A. x2—x+1=0 B. x2+x—3=0 C. 2 x2-x-1=0 D. x2-x-5=0
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】古語說:“春眠不覺曉”,每到初春時分,想必有不少人變得嗜睡,而且睡醒后精神不佳.我們可以在飲食方面進行防治,比如以下食物可防治春困:香椿、大蒜、韭菜、山藥、麥片.春天即將來臨時,某商人抓住商機,購進甲、乙、丙三種麥片,已知銷售每袋甲種麥片的利潤率為10%,每袋乙種麥片的利潤率為20%,每袋丙種麥片的利潤率為30%,當售出的甲、乙、丙三種麥片的袋數之比為1:3:1時,商人得到的總利潤率為22%;當售出的甲、乙、丙三種變片的袋數之比為3:2:1時,商人得到的總利潤率為20%:那么當售出的甲、乙、丙三種麥片的袋數之比為2:3;4時,這個商人得到的總利潤率為_____(用百分號表最終結果).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,將△ABC沿BC方向平移2cm得到△DEF,若△ABC的周長為16cm,則四辺形ABFD的周長為( )
A. 16cmB. 18cmC. 20cmD. 22cm
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,在中,
,
,
,點
為
內一點,連接
、
、
,且
.
(1)以點為旋轉中心,將
繞點
順時針方向旋轉60°,得到
(得到
、
的對應點分別為點
、
),按要求畫圖(保留作圖痕跡).
(2)在(1)的條件下,求的度數及
的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小敏的爸爸買了某項體育比賽的一張門票,她和哥哥兩人都很想去觀看.可門票只有一張,讀九年級的哥哥想了一個辦法,拿了8張撲克牌,將數字為2,3,5,9的四張牌給小敏,將數字為4,6,7,8的四張牌留給自己,并按如下游戲規則進行:小敏和哥哥從各自的四張牌中隨機抽出一張,然后將兩人抽出的兩張撲克牌數字相加,如果和為偶數,則小敏去;如果和為奇數,則哥哥去.
【1】請用畫樹形圖或列表的方法求小敏去看比賽的概率;
【2】哥哥設計的游戲規則公平嗎?若公平,請說明理由;若不公平,請你設計一種公平的游戲規則.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AD∥BC,AB⊥BC于點B,AD=4,將CD繞點D逆時針旋轉90°至DE,連接AE、CE,若△ADE的面積為6,則BC=_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,定義:在直角三角形ABC中,銳角α的鄰邊與對邊的比叫做角α的余切,記作ctanα,即ctanα==
,根據上述角的余切定義,解下列問題:
(1)如圖1,若BC=3,AB=5,則ctanB= ;
(2)ctan60°= ;
(3)如圖2,已知:△ABC中,∠B是銳角,ctan C=2,AB=10,BC=20,試求∠B的余弦cosB的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】附加題:
探究題:我們知道等腰三角形的兩個底角相等,如下面每個圖中的△ABC中AB、BC是兩腰,所以∠BAC=∠BCA.利用這條性質,解決下面的問題:
已知下面的正多邊形中,相鄰四個頂點連接的對角線交于點O它們所夾的銳角為a.如圖:
正五邊形α=_____;正六邊形α=______;正八邊α=_____;當正多邊形的邊數是n時,α=______.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com