【題目】在下列條件中:①∠A+∠B=∠C;②∠A﹕∠B﹕∠C=1﹕2﹕3;③∠A=∠B=
∠C;④∠A=∠B=2∠C;⑤∠A=∠B=
∠C,能確定△ABC為直角三角形的條件有( )
A. 2個 B. 3個 C. 4個 D. 5個
科目:初中數學 來源: 題型:
【題目】如圖,已知拋物線y=mx2+2mx+c(m≠0),與y軸交于點C(0,﹣4),與x軸交于點A(﹣4,0)和點B.
(1)求該拋物線的解析式;
(2)若P是線段OC上的動點,過點P作PE∥OA,交AC于點E,連接AP,當△AEP的面積最大時,求此時點P的坐標;
(3)點D為該拋物線的頂點,⊙Q為△ABD的外接圓,求證⊙Q與直線y=2相切.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,已知MN∥PQ,B在MN上,C在PQ上,A在B的左側,D在C的右側,DE平分∠ADC,BE平分∠ABC,直線DE、BE交于點E,∠CBN=100°.
(1)若∠ADQ=130°,求∠BED的度數;
(2)將線段AD沿DC方向平移,使得點D在點C的左側,其他條件不變,若∠ADQ=n°,求∠BED的度數(用含n的代數式表示).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在矩形OABC中,OA=3,OC=5,分別以OA、OC所在直線為x軸、y軸,建立平面直角坐標系,D是邊CB上的一個動點(不與C、B重合),反比例函數y=(k>0)的圖象經過點D且與邊BA交于點E,連接DE.
(1)連接OE,若△EOA的面積為2,則k= ;
(2)連接CA、DE與CA是否平行?請說明理由;
(3)是否存在點D,使得點B關于DE的對稱點在OC上?若存在,求出點D的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某通訊公司推出①、②兩種通訊收費方式供用戶選擇,其中一種有月租費,另一種無月租費,且兩種收費方式的通訊時間x(分鐘)與收費y(元)之間的函數關系如圖所示.
(1)有月租費的收費方式是 (填①或②),月租費是 元;
(2)分別求出①、②兩種收費方式中y與自變量x之間的函數關系式;
(3)請你根據用戶通訊時間的多少,給出經濟實惠的選擇建議.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com