精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在RtABC中,C=90°,ACD沿AD折疊,使得點C落在斜邊AB上的點E處.

(1)求證:BDE∽△BAC;

(2)已知AC=6,BC=8,求線段AD的長度.

【答案】(1)證明見試題解析;(2)

【解析】

試題(1)折疊的性質可知C=AED=90°,因為DEB=C,B=B證明三角形相似即可;

(2)由折疊的性質知CD=DE,AC=AE.在RtBDE中運用勾股定理求DE,進而得出AD即可.

試題解析:(1)∵∠C=90°,ACD沿AD折疊,∴∠C=AED=90°,∴∠DEB=C=90°,∵∠B=B,∴△BDE∽△BAC;

(2)由勾股定理得,AB=10,由折疊的性質知,AE=AC=6,DE=CD,AED=C=90°BE=AB﹣AE=10﹣6=4,在RtBDE中,由勾股定理得,,即,解得:CD=3,在RtACD中,由勾股定理得,即,解得:AD=

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖1,點是正方形上任意一點,以為邊作正方形,連接,點是線段中點,射線交于點,連接

1)請直接寫出的數量關系和位置關系.

2)把圖1中的正方形繞點順時針旋轉,此時點恰好落在線段上,如圖2,其他條件不變,(1)中的結論是否成立,請說明理由.

3)把圖1中的正方形繞點順時針旋轉,此時點、恰好分別落在線段、 上,連接,如圖3,其他條件不變,若,,直接寫出的長度.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在ABCD中,E、F為對角線BD上的兩點,且∠DAE=∠BCF.

(1)求證:AE=CF;

(2)求證:AE∥CF.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:在中,,點為直線上一動點(不與重合).為邊作正方形,連接.

(1)如圖1,當點在線段上時,求證:.

(2)如圖2,當點在線段的延長線上時,其他條件不變,請直接寫出三條線段之間的關系;

(3)如圖3,當點在線段的反向延長線上時,且點分別在直線的兩側.其他條件不變,若連接正方形對角線,交點為,連接,探究的形狀,并說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】反比例函數y1=(x>0)的圖象與一次函數y2=﹣x+b的圖象交于A,B兩點,其中A(1,2)

(1)求這兩個函數解析式;

(2)在y軸上求作一點P,使PA+PB的值最小,并直接寫出此時點P的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,將矩形紙片ABCD沿對角線BD折疊,C落在點E,BEAD于點F,連接AE

求證:(1BFDF

2)若AB6,AD8BF的長

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某商店將進價為8元的商品按每件10元售出,每天可售出200件,現在采取提高商品售價減少銷售量的辦法增加利潤,如果這種商品每件的銷售價每提高0.5元其銷售量就減少10件,問應將每件售價定為多少元時,才能使每天利潤為640元?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,ACBECD都是等腰直角三角形,ACB的銳角頂點AECD的斜邊DE,AE=,AC=,DE=____.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知拋物線y=x2+mx+nx軸相交于點A、B兩點,過點B的直線y=x+b交拋物線于另一點C(-5,6,點D是線段BC上的一個動點(點D與點BC不重合),作DEAC,交該拋物線于點E

1)求m,n,b的值;

2)求tanACB;

3)探究在點D運動過程中,是否存在∠DEA=45°,若存在,則求此時線段AE的長;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视