精英家教網 > 初中數學 > 題目詳情

【題目】下列各式能用平方差公式計算的是(
A.(2x+y)(2y+x)
B.(x+1)(﹣x﹣1)
C.(﹣x﹣y)(﹣x+y)
D.(3x﹣y)(﹣3x+y)

【答案】C
【解析】解:A、(2x+y)(2y+x)不符合平方差公式的特點,不能用平方差公式計算,故本選項錯誤; B、(x+1)(﹣x﹣1)=(﹣y+x)(﹣y﹣x),不符合平方差公式的特點,不能用平方差公式計算,故本選項錯誤;
C、(﹣x﹣y)(﹣x+y)符合平方差公式的特點,能用平方差公式計算,故本選項正確;
D、(3x﹣y)(﹣3x+y)不符合平方差公式的特點,不能用平方差公式進行計算,故本選項錯誤.
故選:C.
【考點精析】掌握平方差公式是解答本題的根本,需要知道兩數和乘兩數差,等于兩數平方差.積化和差變兩項,完全平方不是它.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】某襯衣店將進價為30元的一種襯衣以40元售出,平均每月能售出600件,調查表明:這種襯衣售價每上漲1元,其銷售量將減少10件.

(1) 寫出月銷售利潤y(單位:元)與售價x(單位:元/件)之間的函數解析式。

(2) 當銷售價定為45元時,計算月銷售量和銷售利潤。

(3) 襯衣店想在月銷售量不少于300件的情況下,使月銷售利潤達到10000元,銷售價應定為多少?

(4) 當銷售價定為多少元時會獲得最大利潤?求出最大利潤.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】下面是某同學在一次測驗中的計算摘錄,其中正確的有(

(1)3x3·(-2x2)=-6x5;

(2)4a3b÷(-2a2b)=-2a;

(3)(a32=a5;

(4)(-a)3÷(-a)=-a2.

A. 1 B. 2 C. 3 D. 4

【答案】B

【解析】試題分析:按照整式的乘除法相關法則進行計算即可判斷.

解:3x3·(-2x2)=-6x5,故①正確;

4a3b÷(-2a2b)=-2a,故②正確

(a3)2a6,故③錯誤;

(-a)3÷(-a)=a2,故④錯誤.

所以,計算正確的有①和②,共2個.

故選B.

型】單選題
束】
6

【題目】式子-5a2+4b2)( )=25a4-16b4中括號內應填( )

A. 5a2+4b2 B. 5a2-4b2 C. -5a2+4b2 D. -5a2-4b2

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】下列說法不正確的是( )
A.在平移變換中,圖形中的每一個點都沿同一方向移動了相同的距離
B.在旋轉變換中,圖形中的每一點都繞旋轉中心旋轉了相同的角度
C.在相似變換中,圖形中的每一個角都擴大(或縮。┫嗤谋稊
D.在相似變換中,圖形中的每一條線段都擴大(或縮小)相同的倍數

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】綜合題。
(1)12﹣(﹣18)+(﹣7)﹣15
(2)﹣22+3×(﹣1)4﹣(﹣4)×5
(3)3x2+6x+5﹣4x2+7x﹣6
(4)5(3a2b﹣ab2)﹣(ab2+3a2b)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在本學期某次考試中,某校初二、初二兩班學生數學成績統計如下表:

分數

50

60

70

80

90

100

人數

二(1)班

3

5

16

3

11

12

二(2)班

2

5

11

2

13

7

請根據表格提供的信息回答下列問題:

1)初二班平均成績為_________分,初二班平均成績為________分,從平均成績看兩個班成績誰優誰次?

2)二班眾數為________分,二班眾數為________分。

3)初二班及格率為_________,初二班及格率為________。

4)已知二班的方差大于二班的方差,那么說明什么?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某汽車銷售公司經銷某品牌A款汽車和B款汽車。已知A款汽車每輛進價為7.5萬元,售價為9萬元。B款汽車每輛進價為6萬元,售價為8萬元,公司預計用不多于105萬元且不少于99萬元的資金購進這兩款汽車共15輛,

(1)有幾種進貨方案?

(2)怎樣購車獲利最大?最大利潤是多少?

(3)若兩種汽車進價不變,為打開B款汽車的銷路,公司決定每售出一輛B款汽車,返還顧客現金a萬元,要使(1)中所有的方案獲利相同,a值應是多少?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知△ABC關于直線MN對稱,則下列說法錯誤的是( )
A.△ABC中必有一個頂點在直線MN上
B.△ABC中必有兩個角相等
C.△ABC中,必有兩條邊相等
D.△ABC中必有有一個角等于60°

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在平面直角坐標系中,點P(x,y)經過某種變換后得到點P′(-y+1,x+2),我們把點P′(-y+1,x+2)叫做點P(x,y)的終結點.已知點P1的終結點為P2,點P2的終結點為P3,點P3的終結點為P4,這樣依次得到P1,P2,P3,P4,…,Pn.若點P1的坐標為(2,0),則點P2 017的坐標為____________.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视