精英家教網 > 初中數學 > 題目詳情

【題目】如圖,AOB=90°,反比例函數y=﹣(x<0)的圖象過點A(﹣1,a),反比例函數y=(k>0,x>0)的圖象過點B,且ABx軸.

(1)求a和k的值;

(2)過點B作MNOA,交x軸于點M,交y軸于點N,交雙曲線y=于另一點C,求OBC的面積.

【答案】(1)a=2,k=8(2) =15.

【解析】分析:(1)把A(-1,a)代入反比例函數得到A(-1,2),過AAEx軸于E,BFx軸于F,根據相似三角形的性質得到B(4,2),于是得到k=4×2=8;
(2)求的直線AO的解析式為y=-2x,設直線MN的解析式為y=-2x+b,得到直線MN的解析式為y=-2x+10,解方程組得到C(1,8),于是得到結論.

詳解:(1)反比例函數y=﹣(x<0)的圖象過點A(﹣1,a),

∴a=﹣=2,

∴A(﹣1,2),

過A作AEx軸于E,BF⊥⊥x軸于F,

∴AE=2,OE=1,

∵AB∥x軸,

∴BF=2,

∵∠AOB=90°,

∴∠EAO+∠AOE=∠AOE+∠BOF=90°,

∴∠EAO=∠BOF,

∴△AEO∽△OFB,

,

∴OF=4,

∴B(4,2),

∴k=4×2=8;

(2)∵直線OA過A(﹣1,2),

直線AO的解析式為y=﹣2x,

∵MN∥OA,

設直線MN的解析式為y=﹣2x+b,

∴2=﹣2×4+b,

∴b=10,

直線MN的解析式為y=﹣2x+10,

直線MN交x軸于點M,交y軸于點N,

∴M(5,0),N(0,10),

得,,

∴C(1,8),

∴△OBC的面積=S△OMN﹣S△OCN﹣S△OBM=5×10﹣×10×1﹣×5×2=15.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】學生在素質教育基地進行社會實踐活動,幫助農民伯伯采摘了黃瓜和茄子共40kg,了解到這些蔬菜的種植成本共42元,還了解到如下信息:黃瓜的種植成本是1/kg,售價為1.5/kg;茄子的種植成本是1.2/kg,售價是2/kg

(1)請問采摘的黃瓜和茄子各多少千克?

(2)這些采摘的黃瓜和茄子可賺多少元?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】四邊形ABCD為正方形,點E為線段AC上一點,連接DE,過點EEF⊥DE,交射線BC于點F,以DE、EF為鄰邊作矩形DEFG,連接CG.

(1)如圖1,求證:矩形DEFG是正方形;

(2)若AB=2,CE=,求CG的長度;

(3)當線段DE與正方形ABCD的某條邊的夾角是30°時,直接寫出∠EFC的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,有一塊直角三角形紙片,兩直角邊AB6,BC8,將△ABC折疊,使AB落在斜邊AC上,折痕為AD,則BD的長為( )

A. 6B. 5C. 4D. 3

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,正方形ABCD的邊長是16,點E在邊AB上,AE=3,點F是邊BC上不與點B、C重合的一個動點,把△EBF沿EF折疊,點B落在B′處,若△CDB′恰為等腰三角形,則DB′的長為 .

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC中,∠B=32°,將△ABC沿直線m翻折,點B落在點D的位置,則∠1-2的度數是(

A. 32° B. 64° C. 65° D. 70°

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】校園安全受到全社會的廣泛關注,我市某中學對部分學生就校園安全知識的了解程度,采用隨機抽樣調查的方式,并根據收集到的信息進行統計,繪制了如圖兩幅尚不完整的統計圖,請你根據統計圖中所提供的信息解答下列問題:

(1)接受問卷調查的學生共有   人,扇形統計圖中了解部分所對應扇形的圓心角為   °;

(2)若該中學共有學生900人,請根據上述調查結果,估計該中學學生中對校園安全知識達到了解基本了解程度的總人數為  人;

(3)若從對校園安全知識達到了解程度的3個女生A、B、C2個男生M、N中分別隨機抽取1人參加校園安全知識競賽,請用樹狀圖或列表法求出恰好抽到女生A的概率.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,ΔP1OA1,ΔP2A1A2是等腰直角三角形,點P1、P2在函數y=(x>0)的圖象上,斜邊OA1、A1A2都在x軸上,則點A2的坐標是____________

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】ABC在直角坐標系內的位置如圖所示.

(1)分別寫出A、B、C的坐標;

(2)請在這個坐標系內畫出A1B1C1,使A1B1C1ABC關于y軸對稱,并寫出B1的坐標;

(3)請在這個坐標系內畫出A2B2C2,使A2B2C2ABC關于原點對稱,并寫出A2的坐標.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视