【題目】如圖,OA=2,以點A為圓心,1為半徑畫⊙A與OA的延長線交于點C,過點A畫OA的垂線,垂線與⊙A的一個交點為B,連接BC
(1)線段BC的長等于;
(2)請在圖中按下列要求逐一操作,并回答問題: 以點為圓心,以線段的長為半徑畫弧,與射線BA交于點D,使線段OD的長等于
(3)連OD,在OD上畫出點P,使OP的長等于 ,請寫出畫法,并說明理由.
【答案】
(1)
(2)A;BC
(3)解:∵OD= ,OP=
,OC=OA+AC=3,OA=2,
∴ .
故作法如下:
連接CD,過點A作AP∥CD交OD于點P,P點即是所要找的點.
依此畫出圖形,如圖2所示.
【解析】解:(1)在Rt△BAC中,AB=AC=1,∠BAC=90°, ∴BC= =
.
故答案為: .
2)在Rt△OAD中,OA=2,OD= ,∠OAD=90°,
∴AD= =
=BC.
∴以點A為圓心,以線段BC的長為半徑畫弧,與射線BA交于點D,使線段OD的長等于 .
依此畫出圖形,如圖1所示.
故答案為:A;BC.
(1)由圓的半徑為1,可得出AB=AC=1,結合勾股定理即可得出結論;(2)結合勾股定理求出AD的長度,從而找出點D的位置,根據畫圖的步驟,完成圖形即可;(3)根據線段的三等分點的畫法,結合OA=2AC,即可得出結論.
科目:初中數學 來源: 題型:
【題目】如圖所示的方格地面上,標有編號1、2、3的3個小方格地面是空地,另外6個小方格地面是草坪,除此以外小方格地面完全相同
(1)一只自由飛翔的小鳥,將隨意地落在圖中所示的方格地面上,求小鳥落在草坪上的概率;
(2)現準備從圖中所示的3個小方格空地中任意選取2個種植草坪,則編號為1、2的2個小方格空地種植草坪的概率是多少 (用樹狀圖或列表法求解)?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】現如今,通過微信朋友圈發布自己每天行走的步數,已成為一種時尚,“健身達人”小張為了了解他的微信朋友圈里大家的運動情況,隨機抽取了部分好友進行調查,把他們6月9日那天每天行走的步數情況分為五個類別:A(0﹣4000步)(說明:“0﹣4000”表示大于等于0,小于等于4000,下同),B(4001﹣8000步),C(8001﹣12000步),D(12001﹣16000步),E(16001步及以上),并將統計結果繪制了如圖1的圖2兩幅不完整的統計圖.
請你根據圖中提供的信息解答下列問題:
(1)將圖1的條形統計圖補充完整;
(2)已知小張的微信朋友圈里共500人,請根據本次抽查的結果,估計在他的微信朋友圈里6月9日那天行走不超過8000步的人數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】我市某蔬菜生產基地用裝有恒溫系統的大棚栽培一種適宜生長溫度為15﹣20℃的新品種,如圖是某天恒溫系統從開啟到關閉及關閉后,大棚里溫度y(℃)隨時間x(h)變化的函數圖象,其中AB段是恒溫階段,BC段是雙曲線y= 的一部分,請根據圖中信息解答下列問題:
(1)求k的值;
(2)恒溫系統在一天內保持大棚里溫度在15℃及15℃以上的時間有多少小時?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,Rt△ABC中,∠C=90°,∠ABC=30°,AC=2,△ABC繞點C順時針旋轉得△A1B1C,當A1落在AB邊上時,連接B1B,取BB1的中點D,連接A1D,則A1D的長度是( )
A.
B.2
C.3
D.2
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1是一個用鐵絲圍成的籃框,我們來仿制一個類似的柱體形籃框.如圖2,它是由一個半徑為r、圓心角90°的扇形A2OB2 , 矩形A2C2EO、B2D2EO,及若干個缺一邊的矩形狀框A1C1D1B1、A2C2D2B2、…、AnBnCnDn , OEFG圍成,其中A1、G、B1在 上,A2、A3…、An與B2、B3、…Bn分別在半徑OA2和OB2上,C2、C3、…、Cn和D2、D3…Dn分別在EC2和ED2上,EF⊥C2D2于H2 , C1D1⊥EF于H1 , FH1=H1H2=d,C1D1、C2D2、C3D3、CnDn依次等距離平行排放(最后一個矩形狀框的邊CnDn與點E間的距離應不超過d),A1C1∥A2C2∥A3C3∥…∥AnCn
(1)求d的值;
(2)問:CnDn與點E間的距離能否等于d?如果能,求出這樣的n的值,如果不能,那么它們之間的距離是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,地面上兩個村莊C、D處于同一水平線上,一飛行器在空中以6千米/小時的速度沿MN方向水平飛行,航線MN與C、D在同一鉛直平面內.當該飛行器飛行至村莊C的正上方A處時,測得∠NAD=60°;該飛行器從A處飛行40分鐘至B處時,測得∠ABD=75°.求村莊C、D間的距離( 取1.73,結果精確到0.1千米)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知一次函數y1=kx+m(k≠0)和二次函數y2=ax2+bx+c(a≠0)的自變量和對應函數值如表:
x | … | ﹣1 | 0 | 2 | 4 | … |
y1 | … | 0 | 1 | 3 | 5 | … |
x | … | ﹣1 | 1 | 3 | 4 | … |
y2 | … | 0 | ﹣4 | 0 | 5 | … |
當y2>y1時,自變量x的取值范圍是( )
A.x<﹣1
B.x>4
C.﹣1<x<4
D.x<﹣1或x>4
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校課外興趣小組在本校學生中開展“感動中國2013年度人物”先進事跡知曉情況專題調查活動,采取隨機抽樣的方式進行問卷調查,問卷調查的結果分為A、B、C、D四類.其中,A類表示“非常了解”,B類表示“比較了解”,C類表示“基本了解”,D類表示“不太了解”,劃分類別后的數據整理如下表:
類別 | A | B | C | D |
頻數 | 30 | 40 | 24 | b |
頻率 | a | 0.4 | 0.24 | 0.06 |
(1)表中的a= , b=;
(2)根據表中數據,求扇形統計圖中類別為B的學生數所對應的扇形圓心角的度數;
(3)若該校有學生1000名,根據調查結果估計該校學生中類別為C的人數約為多少?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com