【題目】如圖,,OC平分
,C為角平分線上一點,過點C作
,垂足為C,交OB于點D,
交OB于點E.
判斷
的形狀,并說明理由;
若
,求CD的長.
【答案】(1)等邊三角形(2)
【解析】
(1)△CED為等邊三角形,理由如下:由OC為角平分線及∠AOB度數求出∠AOC與∠COE度數,再由CE與OA平行,得到一對內錯角相等,再由CD與OC垂直,求出∠ECD度數,利用三個內角相等的三角形為等邊三角形即可得證;
(2)由△CED為等邊三角形,得到三邊相等,利用等角對等邊得到OE=CE,進而得到OE=CE=DE,設CD=x,利用30度角所對的直角邊等于斜邊的一半得到OD=2x,再由OC的長,利用勾股定理列出方程,求出方程的解得到x的值,即可確定出CD的長.
是等邊三角形,理由如下:
平分
,
,
,
,
,
,
,
,
,
是等邊三角形;
是等邊三角形,
,
又,
,
,
設,則
,
在中,根據勾股定理得:
,
解得:,
則.
科目:初中數學 來源: 題型:
【題目】如圖,已知動點P在函數y= (x>0)的圖象上運動,PM⊥x軸于點M,PN⊥y軸于點N,線段PM、PN分別與直線AB:y=﹣x+1交于點E,F,則AFBE的值為( )
A.4
B.2
C.1
D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,某人在山坡坡腳C處測得一座建筑物頂點A的仰角為60°,沿山坡向上走到P處再測得該建筑物頂點A的仰角為45°.已知BC=90米,且B、C、D在同一條直線上,山坡坡度為 (即tan∠PCD=
).
(1)求該建筑物的高度(即AB的長).
(2)求此人所在位置點P的鉛直高度.(測傾器的高度忽略不計,結果保留根號形式)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖①,在平行四邊形ABCD中,AB=3cm,BC=5cm,AC⊥AB,△ACD沿AC的方向勻速平移得到△PNM停止平移時,點Q也停止移動,如圖②,設移動時間為t(s)(0<t<4).連接PQ、MQ、MC.
(1)當t為何值時,PQ∥AB?
(2)當t=3時,求△QMC的面積;
(3)是否存在t,使PQ⊥MQ?若存在,求出t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在中,
,D是AB上的點,過點D作
交BC于點F,交AC的延長線于點E,連接CD,
,則下列結論正確的有______
將所有正確答案的序號都填在橫線上
;
;
是等邊三角形;
若
,則
.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,四邊形ABCD四條邊上的中點分別為E、F、G、H,順次連接EF、FG、GH、HE,得到四邊形EFGH(即四邊形ABCD的中點四邊形).
(1)四邊形EFGH的形狀是_____,證明你的結論;
(2)當四邊形ABCD的對角線滿足_____條件時,四邊形EFGH是矩形(不證明)
(3)你學過的哪種特殊四邊形的中點四邊形是矩形?_____(不證明)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,下列圖形都是由面積為1的正方形按一定的規律組成,其中,第(1)個圖形中面積為1的正方形有2個,第(2)個圖形中面積為1的正方形有5個,第(3)個圖形中面積為1的正方形有9個,……按此規律,則第50個圖形中面積為1的正方形的個數為( 。
A. 1322 B. 1323 C. 1324 D. 1325
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com