【題目】平行四邊形ABCD在平面直角坐標系中的位置如圖所示,其中A,
,反比例函數
的圖象經過點C.
(1)求此反比例函數的解析式;
(2)將平行四邊形ABCD沿x軸翻折得到平行四邊形,請你通過計算說明點
在雙曲線上.
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,O為原點,點A(0,4),點B(﹣2,0),把△ABO繞點A逆時針旋轉,得△AB′O′,點B、O旋轉后的對應點為B′、O′.
(1)如圖①,若旋轉角為60°時,求BB′的長;
(2)如圖②,若AB′∥x軸,求點O′的坐標;
(3)如圖③,若旋轉角為240°時,邊OB上的一點P旋轉后的對應點為P′,當O′P+AP′取得最小值時,求點P′的坐標(直接寫出結果即可)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,等腰△ABC中,AB=AC,BD,CE分別是邊AC,AB上的中線,BD與CE相交于點O,點M,N分別為線段BO和CO的中點.求證:四邊形EDNM是矩形.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某超市以每千克0.8元的價格從批發市場購進若干千克西瓜,在銷售了部分西瓜之后,余下的每千克降價0.3元,直至全部售完.銷售金額y與售出西瓜的千克數x之間的關系如圖所示,那么超市銷售這批西瓜一共賺了( )
A.20元B.32元C.35元D.36元
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AB=4,AC=3,BC=5,DE是BC的垂直平分線,DE分別交BC、AB于點D、E.
(1)求證:△ABC為直角三角形.
(2)求AE的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,海中有一小島P,在距小島P的海里范圍內有暗礁,一輪船自西向東航行,它在A處時測得小島P位于北偏東60°,且A、P之間的距離為32海里,若輪船繼續向正東方向航行,輪船有無觸礁危險?請通過計算加以說明.如果有危險,輪船自A處開始至少沿東偏南多少度方向航行,才能安全通過這一海域?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】露露家里新購進了一臺電熱水器,她對電熱水器的工作原理充滿好奇.查閱說明書得知,電熱水器上面顯示的溫度為內部水箱中水的溫度,每次加熱前可以預設溫度值,當電熱水器達到預設溫度后,電熱水器將停止加熱,開啟保溫功能.而在使用過程中,電熱水器會自動加水,水溫會下降.
露露發現電熱水器中水箱的溫度y(單位:℃)與接通電源后的時間x(單位:min)之間存在函數關系,她打開電熱水器的開關,預設溫度為70℃,并記錄水溫變化的情況見下表,其中在接通電源后的第8min時,電熱水器達到預設溫度;第18min時,媽媽開始使用電熱水器.
時間x(單位:min) | 0 | 2 | 4 | 6 | 8 | 18 | 20 | 21 | 25 | 28 |
溫度y(單位:℃) | 30 | 40 | 50 | 60 | 70 | 70 | 63 | m | 50.4 | 45 |
(1)m的值為_________;
(2)請在下面的坐標系中描出上表中所有數據對應的點,并根據描出的點,畫出當時,溫度y隨時間x變化的函數圖象;
(3)在露露的媽媽使用電熱水器前,電熱水器處于保溫功能的時長為__________min;
(4)未加熱前,電熱水器的水箱中水的溫度為_________℃.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖①,小慧同學把一個正三角形紙片(即△OAB)放在直線l1上。OA邊與直線l1重合,然后將三角形紙片繞著頂點A按順時針方向旋轉120°,此時點O運動到了點O1處,點B運動到了點B1處;小慧又將三角形紙片AO1B1,繞點B1按順時針方向旋轉120°,此時點A運動到了點A1處,點O1運動到了點O2處(即頂點O經過上述兩次旋轉到達O2處)。小慧還發現:三角形紙片在上述兩次旋轉的過程中,頂點O運動所形成的圖形是兩段圓弧,即和
,頂點O所經過的路程是這兩段圓弧的長度之和,并且這兩段圓弧與直線l1圍成的圖形面積等于扇形
的面積、△AO1B1的面積和扇形B1O1O2的面積之和。
小慧進行類比研究:如圖②,她把邊長為1的正方形紙片OABC放在直線l2上,OA邊與直線l2重合,然后將正方形紙片繞著頂點A按順時針方向旋轉90°,此時點O運動到了點O1處(即點B處),點C運動到了點C1處,點B運動到了點B2處,小慧又將正方形紙片AO1C1B1繞頂點B1按順時針方向旋轉90°,…。按上述方法經過若干次旋轉后,她提出了如下問題:
問題①:若正方形紙片OABC按上述方法經過3次旋轉,求頂點O經過的路程,并求頂點O在此運動過程中所形成的圖形與直線l2圍成圖形的面積;若正方形紙片OABC按上述方法經過5次旋轉,求頂點O經過的路程;
問題②:正方形紙片OABC按上述方法經過多少次旋轉,頂點O經過的路程是?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】平面內的兩條直線有相交和平行兩種位置關系
(1)如圖a,若AB∥CD,點P在AB、CD外部,則有∠B=∠BOD,又因∠BOD是△POD的外角,故∠BOD=∠BPD+∠D,得∠BPD=∠B﹣∠D.將點P移到AB、CD內部,如圖b,以上結論是否成立?若成立,說明理由;若不成立,則∠BPD、∠B、∠D之間有何數量關系?請證明你的結論;
(2)在圖b中,將直線AB繞點B逆時針方向旋轉一定角度交直線CD于點Q,如圖c,則∠BPD、∠B、∠D、∠BQD之間有何數量關系?(不需證明)
(3)根據(2)的結論求圖d中∠A+∠B+∠C+∠D+∠E+∠F的度數.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com