【題目】如圖,在矩形ABCD中,∠BAD的平分線交BC于點E,交DC的延長線于點F,取EF的中點G,連接CG,BG,BD,DG,下列結論:
①BE=CD;
②∠DGF=135°;
③∠ABG+∠ADG=180°;
④若,則
.
其中正確的結論是 .(填寫所有正確結論的序號)
【答案】①③④.
【解析】
先求出∠BAE=45°,判斷出△ABE是等腰直角三角形,根據等腰直角三角形的性質可得AB=BE,∠AEB=45°,從而得到BE=CD,故①正確;
再求出△CEF是等腰直角三角形,根據等腰直角三角形的性質可得CG=EG,再求出∠BEG=∠DCG=135°,然后利用“邊角邊”證明△DCG≌△BEG,得到∠BGE=∠DGC,由∠BGE<∠AEB,得到∠DGC=∠BGE<45°,∠DGF<135°,故②錯誤;
由于∠BGE=∠DGC,得到∠ABG+∠ADG=∠ABC+∠CBG+∠ADC-∠CDG=∠ABC+∠ADC=180°,故③正確;
由△BGD是等腰直角三角形得到BD==
,求得S△BDG,過G作GM⊥CF于M,求得S△DGF,進而得出答案.
∵AE平分∠BAD,
∴∠BAE=45°,
∴△ABE是等腰直角三角形,
∴AB=BE,∠AEB=45°,
∵AB=CD,
∴BE=CD,故①正確;
∵∠CEF=∠AEB=45°,∠ECF=90°,
∴△CEF是等腰直角三角形,
∵點G為EF的中點,
∴CG=EG,∠FCG=45°,
∴∠BEG=∠DCG=135°,
在△DCG和△BEG中,
∵BE=CD,∠BEG=∠DCG,CG=EG,
∴△DCG≌△BEG(SAS).
∴∠BGE=∠DGC,
∵∠BGE<∠AEB,
∴∠DGC=∠BGE<45°,
∵∠CGF=90°,
∴∠DGF<135°,故②錯誤;
∵∠BGE=∠DGC,
∴∠ABG+∠ADG=∠ABC+∠CBG+∠ADC﹣∠CDG=∠ABC+∠ADC=180°,故③正確;
∵△DCG≌△BEG,
∵∠BGE=∠DGC,BG=DG,
∵∠EGC=90°,
∴∠BGD=90°,
∵BD==
,
∴BG=DG=,
∴S△BDG==
,
∴3S△BDG=,過G作GM⊥CF于M,
∵CE=CF=BC﹣BE=BC﹣AB=1,
∴GM=CF=
,
∴S△DGF=DFGM=
=
,
∴13S△DGF=,
∴,故④正確.
故答案為:①③④.
科目:初中數學 來源: 題型:
【題目】關于x的一元二次方程x2+(2m+1)x+m2﹣1=0有兩個不相等的實數根.
(1)求m的取值范圍;
(2)寫出一個滿足條件的m的值,并求此時方程的根.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】反比例函數y=的圖象如圖所示,A,P為該圖象上的點,且關于原點成中心對稱.在△PAB中,PB∥y軸,AB∥x軸,PB與AB相交于點B.若△PAB的面積大于12,則關于x的方程(a-1)x2-x+
=0的根的情況是________________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】節能又環保的油電混合動力汽車,既可以用油做動力行駛,也可以用電做動力行駛,某品牌油電混合動力汽車從甲地行駛到乙地,若完全用油做動力行駛,則費用為80元;若完全用電做動力行駛,則費用為30元,已知汽車行駛中每千米用油費用比用電費用多0.5元.
(1)求:汽車行駛中每千米用電費用是多少元?甲、乙兩地的距離是多少千米?
(2)若汽車從甲地到乙地采用油電混合動力行駛,且所需費用不超過50元,則至少需要用電行駛多少千米?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知直線AB經過x軸上的點A(2,0),且與拋物線相交于B、C兩點,已知B點坐標為(1,1) .
(1)求直線和拋物線的解析式;
(2)如果D為拋物線上一點,使得△AOD與△OBC的面積相等,求D點坐標。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某精品店購進甲、乙兩種小禮品,已知1件甲禮品的進價比1件乙禮品的進價多1元,購進2件甲禮品與1件乙禮品共需11元.
(1)求甲禮品的進價;
(2)經市場調查發現,若甲禮品按6元/件銷售,則每天可賣40件;若按5元/件銷售,則每天可賣60件.假設每天銷售的件數y(件)與售價x(元/件)之間滿足一次函數關系,求y與x之間的函數解析式;
(3)在(2)的條件下,當甲禮品的售價定為多少時,才能使每天銷售甲禮品的利潤為60元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某同學在利用描點法畫二次函數y=ax2+bx+c(a=0)的圖象時,先取自變量x的一些值,計算出相應的函數值y,如下表所示:
x | … | 0 | 1 | 2 | 3 | 4 | … |
y | … | ﹣3 | 0 | ﹣1 | 0 | ﹣3 | … |
接著,他在描點時發現,表格中有一組數據計算錯誤,他計算錯誤的一組數據是( )
A. B.
C.
D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,拋物線C1:y=ax2﹣2ax+c(a<0)與x軸交于A、B兩點,與y軸交于點C.已知點A的坐標為(﹣1,0),點O為坐標原點,OC=3OA,拋物線C1的頂點為G.
(1)求出拋物線C1的解析式,并寫出點G的坐標;
(2)如圖2,將拋物線C1向下平移k(k>0)個單位,得到拋物線C2,設C2與x軸的交點為A′、B′,頂點為G′,當△A′B′G′是等邊三角形時,求k的值:
(3)在(2)的條件下,如圖3,設點M為x軸正半軸上一動點,過點M作x軸的垂線分別交拋物線C1、C2于P、Q兩點,試探究在直線y=﹣1上是否存在點N,使得以P、Q、N為頂點的三角形與△AOQ全等,若存在,直接寫出點M,N的坐標:若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線與x軸交于A、B兩點,與y軸交于C點,B點與C點是直線y=x﹣3與x軸、y軸的交點.D為線段AB上一點.
(1)求拋物線的解析式及A點坐標.
(2)若點D在線段OB上,過D點作x軸的垂線與拋物線交于點E,求出點E到直線BC的距離的最大值.
(3)D為線段AB上一點,連接CD,作點B關于CD的對稱點B′,連接AB′、B′D
①當點B′落坐標軸上時,求點D的坐標.
②在點D的運動過程中,△AB′D的內角能否等于45°,若能,求此時點B′的坐標;若不能,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com