在平面直角坐標系xOy中,二次函數y=-x2+(m-1)x+4m的圖象與x軸負半軸交于點A,與y軸交于點B(0,4),已知點E(0,1).
(1)求m的值及點A的坐標;
(2)如圖,將△AEO沿x軸向右平移得到△A′E′O′,連結A′B、BE′.
①當點E′落在該二次函數的圖象上時,求AA′的長;
②設AA′=n,其中0<n<2,試用含n的式子表示A′B2+BE′2,并求出使A′B2+BE′2取得最小值時點E′的坐標;
③當A′B+BE′取得最小值時,求點E′的坐標.
(1)m="1,A(-2,0);" (2)①,②點E′的坐標是(1,1),③點E′的坐標是(
,1).
解析試題分析:(1)將點代入解析式即可求出m的值,這樣寫出函數解析式,求出A點坐標;
(2)①將E點的坐標代入二次函數解析式,即可求出AA′;②連接EE′,構造直角三角形,利用勾股定理即可求出A′B2+BE′2 當n=1時,其最小時,即可求出E′的坐標;③過點A作AB′⊥x軸,并使AB′ =" BE" = 3.易證△AB′A′≌△EBE′,當點B,A′,B′在同一條直線上時,A′B + B′A′最小,即此時A′B+BE′取得最小值.易證△AB′A′∽△OBA′,由相似就可求出E′的坐標
試題解析:
解:(1)由題意可知4m=4,m=1.
∴二次函數的解析式為.
∴點A的坐標為(-2,0).
(2)①∵點E(0,1),由題意可知,.
解得.
∴AA′=.
②如圖,連接EE′.
由題設知AA′=n(0<n<2),則A′O=2-n.
在Rt△A′BO中,由A′B2=A′O2+BO2,
得A′B2=(2–n)2+42=n2-4n+20.
∵△A′E′O′是△AEO沿x軸向右平移得到的,
∴EE′∥AA′,且EE′=AA′.
∴∠BEE′=90°,EE′=n.
又BE=OB-OE=3.
∴在Rt△BE′E中,BE′2=E′E2+BE2=n2+9,
∴A′B2+BE′2=2n2-4n+29=2(n–1)2+27.
當n=1時,A′B2+BE′2可以取得最小值,此時點E′的坐標是(1,1).
③如圖,過點A作AB′⊥x軸,并使AB′=BE=3.
易證△AB′A′≌△EBE′,
∴B′A′=BE′,
∴A′B+BE′=A′B+B′A′.
當點B,A′,B′在同一條直線上時,A′B+B′A′最小,即此時A′B+BE′取得最小值.
易證△AB′A′∽△OBA′,
∴,
∴AA′=,
∴EE′=AA′=,
∴點E′的坐標是(,1).
考點:1.二次函數綜合題;2.平移.
科目:初中數學 來源: 題型:解答題
已知二次函數圖象頂點為C(1,0),直線與該二次函數交于A,B兩點,其中A點(3,4),B點在y軸上.
(1)求此二次函數的解析式;
(2)P為線段AB上一動點(不與A,B重合),過點P作y軸的平行線與二次函數交于點E.設線段PE長為h,點P橫坐標為x,求h與x之間的函數關系式;
(3)D為線段AB與二次函數對稱軸的交點,在AB上是否存在一點P,使四邊形DCEP為平行四邊形?若存在,請求出P點坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
如圖,在平面直角坐標系中,拋物線的頂點A的坐標為(3,15),且過點(-2,10),對稱軸AB交
軸于點B,點E是線段AB上一動點,以EB為邊在對稱軸右側作矩形EBCD,使得點D恰好落在拋物線上,點D′是點D關于直線EC的軸對稱點.
(1)求拋物線的解析式;
(2)若點D′恰好落在軸上的點(0,6)時,求此時D點的坐標;
(3)直線CD′交對稱軸AB于點F,
①當點D′在對稱軸AB的左側時,且△ED′F∽△CDE,求出DE:DC的值;
②連結B D′,是否存在點E,使△E D′B為等腰三角形?若存在,請直接寫出BE:BC的值,若不存在請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
如圖,在平面直角坐標系中,拋物線經過點A的坐標為(m,m),點B的坐標為(n,-n),且經過原點O,連接OA、OB、AB,線段AB交y軸于點C.已知實數m,n(m<n)分別是方程x2-2x-3=0的兩根.
(1)求m,n的值.
(2)求拋物線的解析式.
(3)若點P為線段OB上的一個動點(不與點O、B重合),直線PC與拋物線交于D、E兩點(點D在y軸右側),連接OD,BD.當△OPC為等腰三角形時,求點P的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
如圖,一條拋物線經過原點和點C(8,0),A、B是該拋物線上的兩點,AB∥x軸,OA=5,AB=2.點E在線段OC上,作∠MEN=∠AOC,使∠MEN的一邊始終經過點A,另一邊交線段BC于點F,連接AF.
(1)求拋物線的解析式;
(2)當點F是BC的中點時,求點E的坐標;
(3)當△AEF是等腰三角形時,求點E的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
已知點和點
在拋物線
上.
(1)求的值及點
的坐標;
(2)點在
軸上,且滿足△
是以
為直角邊的直角三角形,求點
的坐標;
(3)平移拋物線,記平移后點A的對應點為
,點B的對應點為
. 點M(2,0)在x軸上,當拋物線向右平移到某個位置時,
最短,求此時拋物線的函數解析式.
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
如圖,拋物線與x軸交于A(1,0)、B(﹣3,0)兩點,與y軸交于點C(0,3),設拋物線的頂點為D.
(1)求該拋物線的解析式與頂點D的坐標.
(2)試判斷△BCD的形狀,并說明理由.
(3)探究坐標軸上是否存在點P,使得以P、A、C為頂點的三角形與△BCD相似?若存在,請直接寫出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com