【題目】如圖,△ABC的內心在y軸上,點C的坐標為(2,0),點B的坐標是(0,2),直線AC的解析式為 ,則tanA的值是 .
【答案】
【解析】解:根據三角形內心的特點知∠ABO=∠CBO,
∵已知點C、點B的坐標,
∴OB=OC,∠OBC=45°,∠ABC=90°可知△ABC為直角三角形,BC=2 ,
∵點A在直線AC上,設A點坐標為(x, x﹣1),
根據兩點距離公式可得:
AB2=x2+ ,
AC2=(x﹣2)2+ ,
在Rt△ABC中,
AB2+BC2=AC2 ,
解得:x=﹣6,y=﹣4,
∴AB=6 ,
∴tanA= =
=
.
所以答案是: .
【考點精析】本題主要考查了一次函數的性質的相關知識點,需要掌握一般地,一次函數y=kx+b有下列性質:(1)當k>0時,y隨x的增大而增大(2)當k<0時,y隨x的增大而減小才能正確解答此題.
科目:初中數學 來源: 題型:
【題目】一次時裝表演會預算中票價定為每張100元,容納觀眾人數不超過2000人,毛利潤y(百元)關于觀眾人數x(百人)之間的函數圖象如圖所示,當觀眾人數超過1000人時,表演會組織者需向保險公司繳納定額平安保險5000(不列入成本費用),請解答下列問題:
(1)當觀眾不超過1000人時,毛利潤y關于觀眾人數x的函數解析式和成本費用s(百元)關于觀眾人數x(百人)的函數解析式;
(2)若要使這次表演會獲得36000元的毛利潤,那么需售出多少張門票需支付成本費用多少元(當觀眾人數不超過1000人時,表演會的毛利潤=門票收入﹣成本費用;當觀眾人數超過1000人時,表演會的毛利潤=門票收入﹣成本費用﹣平安保險費).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,分別以直角△ABC的斜邊AB,直角邊AC為邊向△ABC外作等邊△ABD和等邊△ACE,F為AB的中點,DE與AB交于點G,EF與AC交于點H,∠ACB=90°,∠BAC=30°.給出如下結論:
①EF⊥AC;②四邊形ADFE為菱形;③AD=4AG;④FH= BD
其中正確結論的為(請將所有正確的序號都填上).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=x2+bx+c的頂點為D(﹣1,﹣4),與y軸交于點C(0,﹣3),與x軸交于A,B兩點(點A在點B的左側).
(1)求拋物線的解析式;
(2)連接AC,CD,AD,試證明△ACD為直角三角形;
(3)若點E在拋物線的對稱軸上,拋物線上是否存在點F,使以A,B,E,F為頂點的四邊形為平行四邊形?若存在,求出所有滿足條件的點F的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,拋物線y=ax2+bx+c(a≠0)的頂點為C(1,4),交x軸于A、B兩點,交y軸于點D,其中點B的坐標為(3,0).
(1)求拋物線的解析式;
(2)如圖2,過點A的直線與拋物線交于點 E,交y軸于點F,其中點E的橫坐標為2,若直線PQ為拋物線的對稱軸,點G為直線 PQ上的一動點,則x軸上是否存在一點H,使D、G,H、F四點所圍成的四邊形周長最?若存在,求出這個最小值及點G、H的坐標;若不存在,請說明理由;
(3)如圖3,在拋物線上是否存在一點T,過點T作x軸的垂線,垂足為點M,過點M作MN∥BD,交線段AD于點N,連接MD,使△DNM∽△BMD?若存在,求出點T的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了解某品牌電風扇銷售量的情況,對某商場5月份該品牌甲、乙、丙三種型號的電風扇銷售量進行統計,繪制如下兩個統計圖(均不完整).請你結合圖中的信息,解答下列問題:
(1)該商場5月份售出這種品牌的電風扇共多少臺?
(2)若該商場計劃訂購這三種型號的電風扇共2000臺,根據5月份銷售量的情況,求該商場應訂購丙種型號電風扇多少臺比較合理?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB=AD,CB=CD,對角線AC,BD相交于點O,下列結論中: ①∠ABC=∠ADC;
②AC與BD相互平分;
③AC,BD分別平分四邊形ABCD的兩組對角;
④四邊形ABCD的面積S= ACBD.
正確的是(填寫所有正確結論的序號)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com