【題目】如圖,在△ABC和△EDC中,AC=CE=CB=CD;∠ACB=∠DCE=90°,AB與CE交于F,ED與AB,BC,分別交于M,H.
(1)求證:CF=CH;
(2)△ABC不動,將△EDC繞點C旋轉到∠BCE=45°,證明:四邊形ACDM是菱形.
【答案】
(1)證明:在△ACB和△ECD中,
∵∠ACB=∠ECD=90°,
∴∠1+∠ECB=∠2+∠ECB,
∴∠1=∠2;
又∵AC=CE=CB=CD,
∴∠A=∠D=45°;
在△CFA和△CHD中,
∵ ,
∴△CFA≌△CHD(AAS),
∴CF=CH
(2)證明:∵∠ACB=∠ECD=90°,∠BCE=45°,
∴∠1=45°,∠2=45°.
又∵∠E=∠B=45°,
∴∠1=∠E,∠2=∠B,
∴AC∥MD,CD∥AM,
∴四邊形ACDM是平行四邊形,
又∵AC=CD,
∴平行四邊形ACDM是菱形
【解析】(1)先根據直角三角形的性質得出∠1=∠2,再由AAS定理得出△CFA≌△CHD,進而可得出結論;(2)根據∠BCE=45°得出∠1=∠2=45°.根據∠E=∠B=45°得出∠1=∠E,∠2=∠B,故可得出四邊形ACDM是平行四邊形,再由AC=CD即可得出結論.
【考點精析】本題主要考查了菱形的判定方法和旋轉的性質的相關知識點,需要掌握任意一個四邊形,四邊相等成菱形;四邊形的對角線,垂直互分是菱形.已知平行四邊形,鄰邊相等叫菱形;兩對角線若垂直,順理成章為菱形;①旋轉后對應的線段長短不變,旋轉角度大小不變;②旋轉后對應的點到旋轉到旋轉中心的距離不變;③旋轉后物體或圖形不變,只是位置變了才能正確解答此題.
科目:初中數學 來源: 題型:
【題目】已知二次函數y=ax2+bx+c(a≠0)的圖象如圖所示,對稱軸是直線x=﹣1,下列結論: ①abc<0;②2a+b=0;③a﹣b+c>0;④4a﹣2b+c<0
其中正確的是( )
A.①②
B.只有①
C.③④
D.①④
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,Rt△OAB的頂點A(﹣2,4)在拋物線y=ax2上,將Rt△OAB繞點O順時針旋轉90°,得到△OCD,邊CD與該拋物線交于點P,則點P的坐標為( )
A.( ,
)
B.(2,2)
C.( ,2)
D.(2, )
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,直線 y=x+2 與兩坐標軸分別交于A、B 兩點,點 C 是 OB 的中點,D、E 分 別是直線 AB、y 軸上的動點,則△CDE 周長的最小值是________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠A=40°,以直角頂點C為旋轉中心,將△ABC旋轉到△A′B′C的位置,其中A′、B′分別是A、B的對應點,且點B在斜邊A′B′上,直角邊CA′交AB于D,則旋轉角等于( )
A.70°
B.80°
C.60°
D.50°
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,二次函數y=ax2+bx+c的圖象與x軸交于A、B兩點,其中A點坐標為(﹣1,0),點C(0,5),另拋物線經過點(1,8),M為它的頂點.
(1)求拋物線的解析式;
(2)求△MCB的面積S△MCB .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com