精英家教網 > 初中數學 > 題目詳情

【題目】在△ABC和△DCE中,CA=CBCD=CE,∠CAB= CED=α.

(1)如圖1,將AD、EB延長,延長線相交于點0.

①求證:BE= AD;

②用含α的式子表示∠AOB的度數(直接寫出結果);

(2)如圖2,當α=45°時,連接BD、AE,CMAEM點,延長MCBD交于點N.求證:NBD的中點.

:(2)問的解答過程無需注明理由.

【答案】1)①見解析∠BOA=2α2)見解析

【解析】

1)①根據等腰三角形的性質和三角形的內角和得到∠ACB=∠DCE,根據全等三角形的性質即可得到結論;

②根據全等三角形的性質得到∠CAD=CBE=α+∠BAO,根據三角形的內角和即可得到結論;

2)如圖2,作BPMN的延長線上于點P,作DQMNQ,根據全等三角形的性質得到MC=BP,同理CM=DQ,等量替換得到DQ=BP,根據全等三角形的性質即可得到結論.

1)①∵CA=CB,CD=CE,CAB=CED=α,

∴∠ACB=180°-2α∠DCE=180°-2α,

∠ACB=∠DCE

∠ACB-∠DCB=∠DCE-∠DCB

∠ACD=∠BCE

△ACD△BCE

△ACD△BCE

BE=AD

∵△ACD△BCE

∠CAD=∠CBE=α+∠BAO,

∵∠ABE=BOA+BAO

∠CBE+α=∠BOA+BAO

∴∠BAO+α+α=∠BOA+BAO

∴∠BOA=2α

2)如圖2,作BPMN的延長線上于點P,作DQMNQ

∠BCP+∠BCA=∠CAM+∠AMC

∴∠BCA=AMC

∴∠BCP=∠CAM

△CBP△ACM

△CBP△ACMAAS

MC=BP.

同理△CDQ△ECM

CM=DQ

∴DQ=BP

△BPN△DQN

△BPN△DQN

BN=ND,

NBD中點.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】在五邊形ADBCE中,∠ADB=∠AEC=90°,∠DAB=∠EAC,M、N、O分別為AC、AB、BC的中點.

(1)求證:△EMO≌△OND;

(2)若AB=AC,且∠BAC=40°,當∠DAB等于多少時,四邊形ADOE是菱形,并證明.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】為了加強建設“經濟強、環境美、后勁足、群眾富”的實力城鎮,聚力脫貧攻堅,全面完成脫貧任務,某鄉鎮特制定一系列幫扶計劃。現決定將A、B兩種類型魚苗共320箱運到某村養殖,其中A種魚苗比B種魚苗多80箱。

1)求A種魚苗和B種魚苗各多少箱?

2)現計劃租用甲、乙兩種貨車共8輛,一次性將這批魚苗全部運往同一目的地。已知甲種貨車最多可裝A種魚苗40箱和B種魚苗10箱,乙種貨車最多可裝A種魚苗和B種魚苗各20箱。如果甲種貨車每輛需付運輸費4000元,乙種貨車每輛需付運輸費3600元,則安排甲、乙兩種貨車有哪幾種不同的方案?并說明選擇哪種方案可使運輸費最少?最少運輸費是多少元?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知四邊形ABCD,ABC+ADC=180,連接AC,BD.

(1)如圖1,當∠ACD=CAD=45時,求∠CBD的度數;

(2)如圖2,當∠ACD=CAD=60時,求證:AB+BC=BD;

(3)如圖3,(2)的條件下,過點CCKBD于點K,AB的延長線上取點F,使∠FCG=60,過點FFHBD于點H,BD=8,AB=5,GK=,求BH的長。

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】將長為20cm,寬為8cm的長方形白紙,按如圖所示的方式粘合起來,粘合部分的寬為3cm.

(1)根據題意,將下面的表格補充完整.

(2)直接寫出yx的關系式.

(3)要使粘合后的長方形總面積為1656cm2,則需用多少張這樣的白紙?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在△ABC和△DCE中,CA=CB,CD=CE,∠CAB= CED=α.

(1)如圖1,將ADEB延長,延長線相交于點0.

①求證:BE= AD;

②用含α的式子表示∠AOB的度數(直接寫出結果);

(2)如圖2,當α=45°時,連接BD、AE,CMAEM點,延長MCBD交于點N.求證:NBD的中點.

:(2)問的解答過程無需注明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC,∠ACB90°,∠CAB30°,以線段AB為邊向外作等邊△ABD,E是線段AB的中點,連接CE并延長交線段AD于點F

1)求證四邊形BCFD為平行四邊形;

2)若AB6求平行四邊形BCFD的面積

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知如圖1,在△ABC中,∠ACB90°,BCAC,點DAB上,DEABBCE,點FAE的中點

1)寫出線段FD與線段FC的關系并證明;

2)如圖2,將△BDE繞點B逆時針旋轉α0°<α90°),其它條件不變,線段FD與線段FC的關系是否變化,寫出你的結論并證明;

3)將△BDE繞點B逆時針旋轉一周,如果BC4,BE2,直接寫出線段BF的范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某景區的門票銷售分兩類:一類為散客門票,價格為/張;另一類為團體門票(一次性購買門票張以上),每張門票價格在散客門票價格的基礎上打折,某班部分同學要去該景點旅游,設參加旅游人,購買門票需要

1)如果每人分別買票,求之間的函數關系式:

2)如果購買團體票,求之間的函數關系式,并寫出自變量的取值范圍;

3)請根據人數變化設計一種比較省錢的購票方式.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视